
A Data-driven 3D Vision Feedback System for Bilateral
Rehabilitation Application

Xiang Kui*1, *2, Guo Shuxiang*1, *3, Song Zhibin*1

*1 Dept. of Intelligent Mechanical Systems Eng'g, *2 School of Automation *3 College of Automation
Kagawa University, Wuhan University of Technology Harbin Engineering University

Hayashi-cho, Takamatsu 761-0396, Japan Wuhan 430070, China Harbin, Heilongjiang, China
xiang@eng.kagawa-u.ac.jp, guo@eng.kagawa-u.ac.jp, song@eng.kagawa-u.ac.jp

Abstract – The patients in bilateral rehabilitation move
their paretic limbs to follow the trajectory defined by imparetic
limbs. The robot provides power only when the patients need
assistance. Capturing the motion posture and feeding back to
patients through audio or visual modes can raise training
enthusiasm and activeness and obtain better rehabilitation effect.
A mini even free vision feedback system is on demand when
rehabilitation trainings need to be implemented at home. In this
study a vision feedback system is developed based on open source
software. The original 3D character is generated by a piece of
special software Makehuman and exported as several optional
formats such as obj, mtl, bvh and so on. These exported files are
re-loaded in a graph interface built with wxWidgets and
rendered with OpenGL. The motion sensors are fixed on the
patient’s limbs and the motion data are sampled to update 3D
model rendering. The patients’ motion posture is shown on a
screen in real time to prompt their rehabilitation training. The
new vision feedback system presented in this paper does not
depend on any commercial software or expensive hardware. As a
fully open source system, it is very appropriate to realize more
economical rehabilitation trainings.

Index Terms –Vision Feedback, Open Source, 3D Model,
Rehabilitation.

I. INTRODUCTION

Stroke is the leading cause of disabilities especially in
developed countries because of the unhealthy living style. A
great number of patients survive a first or recurrent stroke and
suffer from hemiparesis which is the common motor deficit.
Disabilities in the extremities severely influence daily
activities. The previous studies have proved that the neurons
are of plasticity and the motion functions can be recovered by
iterative motor exercises. Thus more effective rehabilitation
techniques except for therapists are looked forward to, and the
prevail supplement is rehabilitation robots [1].

Most of studies in the past focused on the unilateral
training in which the rehabilitation actions only performed on
paretic limbs. Recently, a new suggested therapeutic technique
is bilateral training which requires two limbs to synchronize in
rehabilitation actions [2]. Bilateral training has two main
advantages: the imparetic limb provides the training trajectory
guiding the paretic limb; two limbs simultaneous training
encourages the inter-limb coordination. Generating the
trajectory by imparetic limbs is so convenient that
independent training at home without therapists attending is
feasible. The bilateral movement can activate the undamaged
hemisphere to promote neural plasticity and enhance the

therapy for damaged hemisphere. A randomized, controlled
trial involving 127 patients with upper-limb impairment
receives intensive robot-assisted therapy, intensive
comparison therapy, and usual care, respectively [3]. At 12
weeks, the robot-assisted therapy had not more advantages in
motor function improvement; but over 36 weeks robot-
assisted therapy improved outcomes as compared with usual
care.

There are many robot researches on bilateral
rehabilitation. Lum and et al [4] presented the mirror-image
movement enable (MIME) robotic device and investigated the
hypothesis that the robotic training improves muscle
activation. Thirteen stoke survivors trained in MIME
increased their reach extent and speed. Song and et al [5]
designed an exoskeleton device with three active DoFs and
four passive DoFs to assist the paretic limb on the elbow and
wrist for stroke subjects. At the same time, a haptic device
(Phantom Premium) was adapted on the intact side to guide
the motion of paretic limb. The exoskeleton is portable and
suitable for home-rehabilitation or remote rehabilitation.
Mihelj and et al [6] proposed and evaluated a new paradigm
for patient-cooperative control strategy. The patients try their
best for reaching movements with their own trajectory, and
the robot helps them only when the training task can not be
completed. Such minimal intervention principle allows the
patients’ activeness unless their actions interfere with task
specifications. Cai and et al [7] proposed a robotic training
paradigms, assist-as-needed (AAN), to encourage the
rehabilitation movement variability. Twenty-seven mice were
collected to test the efficacy of robotic control strategies, and
found that AAN window paradigm showed the highest level
of recovery.

Virtual reality (VR) as a unique medium provides a
functional, purposeful and motivating context for effective
rehabilitation intervention. VR can produce simulated,
interactive and multi-media environments and allow users to
interact in real time with images modulated by motion sensor
information [8]. The past studies have demonstrated the VR
application in the treatment of stroke survivors [9].
Furthermore, augmented reality (AR) does not fully pursue
the immerse sense like VR, and it provides an environment
with the real and virtual objects coexisting in the real world
[10]. AR is very useful to rehabilitation systems targeting
daily living activities.

Trlep and et al [11] designed a virtual flight simulator
game using Unity3D software to enhance subject’s
motivation. In the game one of the planes represents the
tracker’s pose corresponding to the pose of the bilateral
handlebars. Liu and et al [12] combined a dual video to meet
rehabilitation training needs and made the motion analysis
feed back to the patient in real time. Secolil and et al [13]
researched on the visual target tracking while receiving
adaptive assistance from an arm exoskeleton robot. They
found that incorporating real-time auditory feedback of
performance errors might improve clinical outcomes. Tao and
et al [14] introduced a motion tracking system with vision and
inertial sensors for home based rehabilitation. The experiment
shows the system can track the 3D arm motion in real time
with acceptable accuracy compared with the commercial
marker based system. Brewer and et al [15] constructed a
controllable visual distortion environment to amplify the
imperceptible error of the force and position during training.
They found that the visual distortion can be used to alter a
patient’s perception of therapeutic exercise under the assist of
a robot.

Wu and et al [16] designed VR rehabilitation to enhance
the effect of mirror therapy. The VR system evokes the
patient’s motor image and acquires motor abilities. Loconsole
and et al [17] built a computer vision system recording the
rehabilitation training with webcam and redisplaying in a
screen with OpenCV. The reaching target is recognized in
OpenCV and used as the control goal of the robot. Vergaro
and et al [18] replicated the picture on the screen that included
the predefined path, moving target and hand position to
automatically adapt the man machine interaction forces.
Duschau-Wicke and et al [19] presented a patient-cooperative
strategy by showing a compliant virtual wall on a screen.
Graphical feedback provides visual training instructions to
encourage larger temporal variability and frees patients from
the robot control. Wang and et al [20] integrated the visual
error augmentation with the AAN training in robot-assisted
rehabilitation system. The visual error augmentation heightens
the patient’s motivation to improve tracking accuracy.

Based on the above reviews, we can conclude that the
vision feedback system play a crucial pole in AAN training
paradigms besides the patient and robot. It is a close-loop
system including a VR environment and patient. The
traditional VR research focuses on game design. But the
vision feedback system specializes in constructing a vivid 3D
human model and driving it with motion data. A new vision
feedback system oriented to rehabilitation application is
design based on a professional human character and MTx
sensors. We will present the details about how to generate,
load and drive a 3D model in the following sections.

II. OPEN SOURCE GUI PROGRAMMING

Graphical User Interface (GUI) is the core for a vision
feedback system design. Selecting an appropriate GUI tool is
not easy because there are so many choices in a Windows-
prevailing age. Three important standards are list for choosing

a GUI tool: open source, free, powerful enough but not
cumbersome. Many tasks such as sampling, analysis and
control are usually embedded in vision feedback systems and
executed in background, which is different from one-fold
game design. These background tasks have real time demand.
The open source GUI can ensure foreground updating fully
cooperate with background computing. The free GUI can cut
down the cost of rehabilitation equipments and a mini even
free vision feedback system is especially appropriate to home
or remote rehabilitation. A powerful GUI tool can reduce the
programming burden. But too powerful tool may be redundant
because the vision feedback system is just a piece of
lightweight software.

Taking Microsoft Foundation Classes (MFC) as an
example, it is a very powerful GUI tool and can perfectly join
in Windows operation system, but it is fully commercial and
not open source. QT is another powerful GUI tool with
commercial and free versions. It is open source and cross
platform application better than MFC, but too cumbersome to
deal with vision feedback programming. Fast Light Toolkit
(FLTK) seems to a good choice, but it is so lightweight that
not able to support networking, printing etc.

wxWidgets is considered as the most appropriate GUI for
vision feedback system design. It is a C++ library with
bindings for python, java, C# and etc, and can create
application for Windows, OSX, Linux and UNIX on 32-bit
and 64-bit architectures as well as mobile platforms. The
source codes of wxWidgets can be complied as our need to
various libraries, including the options such as static or
shared, debug or release, Unicode, OpenGL, ODBC database
and etc. Based on wxWidgets, the corresponding selections of
Integrated Development Environment (IDE) and compiler are
explicit: Code::Blocks (shown in Fig. 1) and Mingw. This
combination of GUI, IDE and compiler are all free and can
support many program languages.

Fig. 1 The interface of Code::Blocks
Based on wxWidgets as GUI tool, OpenGL is the nature

choice for graph interface programming. A special class
wxGLCanvas has been developed in wxWidgets to support
OpenGL programming. Modifying the compiler configures on
wxGLCanvas and OpenGL is necessary in custom building.
Load the OpenGL libraries as usual and the graph rendering
codes are executed in a class inherited from wxGLCanvas.

In 3D human model, the graph texture is saved as a
separate file. The texture files has different formats, so

loading and transforming them into bitmaps are very
troublesome. A new piece of third-party software, FreeImage,
is adopted here to help us make use of the texture file. Just
like the above candidate tools, FreeImage is also free and
open source. Not all of the graph format support transparent
pattern and FreeImage can not automatically add transparent
feature. Fortunately, a simple operation on bitmap arrays can
transform color format from RGB to RGBA and the latter
format supports transparent effect.

All the software selected is open source and free, and the
details are shown as Table I.

TABLE I THE OPEN SOUSE FREE SOFTWARE

The open source free software Application
Mingw Compiler

Code::blocks Integrated Development Environment
wxWidgets Graphical User Interface

wxFormBuilder Rapid Application Development for
wxWidgets

OpenGL Graph rendering
FreeImage popular graphics image formats

MakeHuman modeling 3D humanoid characters
STL Standard Template Library

III. 3D MODEL AND FILE LOADING

A special 3D model made by professional 3D software is
much better than the graph directly drawn by OpenGL. The
vivid human model can realize the immersive visualization
effect. The commercial 3D software is abundant, but most of
them are all-purpose and not good at human model.
Fortunately, a piece of open source free software, Makehuman
(shown in Fig. 2), specializes in human model making.
Makehuman supports the easy modification of gender, age,
tone, weight, height, ethnics and etc. The modeling results are
exported as several formats: obj, mhx, dae, stl and etc. More
libraries including clothes, eyes, skin and hair can be used to
enhance the character details. But the clothes library has a
shortcoming not being able to envelop the skins. Another
piece of free software, blender can help to overcome this
shortcoming with complicated modifications. We give up to
adding clothes library and hope Makehuman workgroup can
remedy this function defect as soon as possible.

Fig. 2 The interface of Makehuman
The 3D file format has to be carefully selected to match

the need of vision feedback system. Three selection standards
are concluded as: skin rendering, skeleton moving and open

source. The skin rendering is basic to 3D graph display, and a
great number of polygons compose the mesh as human skin.
The mesh not bonded with skeletons displays just as static
graph, and can not follow the rehabilitation actions. So the
skeleton information corresponding to each section of skins
need to be saved in mesh file or as a separate file. The open
source file format is convenient to file loader programming by
ourselves not depending on commercial loader. Taking 3ds
format as an example, it consists of mesh and skeleton
information in one file, so it is often used to design vision
feedback system. But 3ds format is not open source and the
loading results are in pieces. Trying to load a locking format is
undoubtedly harmful to the entire design of the vision
feedback system.

Of the format supported by Makehuman, obj and bvh are
mesh and skeleton file, respectively. An mtl file is exported as
an appendant of the obj file and it contains the light, color and
texture information for rendering. A graph file about texture is
outputted as the supplement of mtl files, and the graph format
may be jpg, bmp, png and etc. Under normal conditions, four
files need to be loaded again in vision feedback system to
recur a vivid character made in Makehuman. They are obj,
bvh, mtl and png, respectively.

The obj, bvh and mtl files are ASCII format with special
designing keywords, so loader programming is not difficult. A
file stream class is defined and pointed to the file, and then a
std::iterator from Standard Template Library (STL) is used to
traverse file stream. The rest task of the loader is to store the
stream contents in self-defined data structures.

The obj file mainly includes three kinds of definitions:
vertex, face and group. The vertex has three types: the
position of each vertex, the UV position of each texture
coordinate vertex, normals. A list of vertices (at least three)
and texture vertices define a polygon as a surface. The triangle
is the common type. Noticeably, only the vertex index is used
in surface definition for space saving. A surface set is called
as a group which has the same materials.

An obj file is followed by one or more mtl files, from
which one or more material descriptions are referenced by
names. The mtl file defines the light reflecting properties for
computer rendering. The ambient, diffuse and specular color
of the material are declared as Ka, Kd and Ks, respectively.
Color definitions are in RGB where each channel's value is
between 0 and 1. The specular color is weighted using the
specular coefficient Ns, and multiple illumination models are
available per material. Textured materials are declared as a
graph file name, and they belong the same properties as
above.

Bvh is a type of motion capture file format used to import
rotational joint data. A bvh file has two parts: a header section
describing the hierarchy and initial pose of the skeleton; a data
section containing the motion data. Only the header section is
needed in vision feedback system, and our own data section
will be imported to drive the joint. The header section begins
with the keyword "HIERARCHY", then following the
keyword "ROOT" and "JOINT". The bvh adopts a recursive

definition. Each segment of the hierarchy recursively defines
its children. The first piece of information of a segment is the
offset from its parent, which begins with the keyword
"OFFSET".

A class is defined as the basis of the entire file format
loaders. Then the inherit classes are used to take charge of the
different formats. The STL container std::vector is the basic
data structure saving the file contents. Some self-defined
structures are used to transfer the useful information to the
display and control program in the following.

IV. BONDING THE SKIN AND SKELETON

The skin and skeleton data are independently loaded
from different files. They are separately stored in isolated data
structures without any connection. Bonding is in fact a
process rebuilding the connection between skin and skeleton.
The bonding process has two steps: matching and weighing.
The matching is a step finding the map from skin to skeleton.
Any piece of skin must be connected with at least one
skeleton, or it can not be driven to follow the human move
and action. The weighing is a step computing the weight
between the skin and its mapping skeletons. The skin at joints
is a typical example which is connected with two or more
skeletons. So the membership degree to different skeletons
needs to be described by a weight coefficient.

Sometimes the skeleton information is not available and
the center lines are computed to make up for the absentation
of skeleton information. Accidentally only a general skeleton
is available without the appropriate scale and pose setting. The
additional zooming and rotating operations is needed during
matching process to carefully adjust skeletons. Fortunately,
Makehuman has already appointed a special skeleton
hierarchy for each 3D human model. In other words, the
skeleton adjustment is finished by Makehuman and the rest
task is just to determine the map relationship. The min-
distance is the usual rule for automatic defining map, but it
may fail in some human pose. For example, the skin at body
sides may be mapped to upper limb skeletons when two arms
clinging to the body. The bounding box is another bonding
method. Its computation is simple but the bonding precision is
not satisfying.

A bonding interface based on dialog frameworks is
developed to replace the automatic bonding. The man-
machine interaction through the bonding dialog realizes a type
of manual bonding one by one. The bonding dialog includes
three parts as shown in Fig. 3 : skeleton tree, skin database
and map list. All the skeletons loaded from bvh file are
displayed as a tree hierarchy that can be realized by the class
wxTreeCtrl. Both the skin database and map list are in fact the
lists inherited from the class wxListCtrl. The inserting and
deleting operations of wxListCtrl depend on the component
position. When multiple components are deleted at the same
time, the position updating can not follow on time the deleting
operation and often result in error deleting. A STL container,
std::map is used as the background data structure for
synchronizing the list updating. When the deleting command

is sent, it is firstly executed in the std::map, and then the
corresponding list is fully refreshed by the background
contents.

All the skin blocks not being bonded is temporally stored
in the skin database. The user can switch the map list by
double clicking the tree node. When the skin block is selected
and inserted into the map list, it has been bonded to the
current skeleton. The inner data structure of the current
skeleton synchronously updates the bonding information. If
the bonding information needs to be modified, the skins can
be deleted from the map list to release the bonding.

Fig. 3 The bonding interface
The skeleton hierarchy is displayed as matchstick shape.

The skeleton is on the center axis of the skin surface and is
covered by skins when natural displaying. The skins are set to
be transparent and help us to clarify the map relationship.
Multiple display modes are set as Fig. 4 to distinguish the
bonding stages. All the skins are in grey color by default; the
skin selected is in highlight yellow color and the skin bonded
is in texture mode. The model loaded is three-dimension so
some skins can not been seen from the front, and it can be
freely rotated by mouse grasping to show the back skin. When
all the skins are scattered one by one into the map list, the
bonding task is finished and the bonding result is saved as a
text file. The bonding information will be loaded again during
loading the human model.

Fig. 4 The coloring style for bonding process
The principle of bonding algorithm can be described as

the following equation:

� � 1

1

N
new new old old

i i i
i

v w v
�

�

� � M M . (1)

v is the coordination of the skin vertex; M is the transform
matrix of the skeleton; w is the weight and i is the number of
the skeleton. The superscripts old and new represent the
original and current positions, respectively.

There are two bonding weight: rigid and flexible. The
rigid bonding means that the skin is bonded with the sole
skeleton and the weight is set as 1. The rigid weight is rough
and may result in the skin distorting. The flexible weight is
more reasonable as well as more complex. There are many
expert weighting computation algorithms in commercial
software. Here only line bonding algorithm, template fitting,
is introduced.

Baran and et al [21] present a new weighting
computation: simulating template fitting. The human model is
considered as a thermal conductor. The template of heating
skeleton i is 1, and the template of the others is 0. After fitting,
the template at each vertex is set as the weight originated from
skeleton i. The weighting computation equation is

i i iw u w�� � �H . (2)
Where is Laplace operator; u is a vector and 1i

ju � if the

skeleton i is the closest to vertex j, or 0i
ju � . H is a diagonal

matrix and jjH is the template weight from vertex j to the

closest skeleton. Usually 2
jj jiH c w� 	 and the const c is set as

0.105~0.385. When the linear weight is added, the skin
deformation at joints will be more realistic.

V. DATA-DRIVEN MOTION RENDERING

After all the 3D model files are successfully loaded, the
information has been preserved in data structures, and the
skins have been bonded with appropriate weights. The left
task is to render the human model on the screen. A panel is
created in the man-machine interface as wxGLCanvas’s parent
window. When the wxGLCanvas instance is constructed, a
function SetCurrent is called to set the instance as the context
environment for rendering. Then all kinds of OpenGL
commands are called to set up the implicit state for rendering
context.

OpenGL provides three transformation functions: the
translating function glTranslate; the rotating function glRotate
and the scale zooming function glScale. OpenGL provides
four transformation types: the viewing transformation; the
modeling transformation; the projection transformation and
the viewport transformation. Before each transformation is
implemented, the function glLoadIdentity must be called to set
the current matrix as the identity one. By these transformation
types, the 3D model can be displayed as a 2D graph in a
screen.

Before beginning the graph rendering, many environment
settings are needed to initialize. The lighter is turned on and
its attributes are set based on what the mtl file defines. The
color and depth buffers are cleared by the prior setting value.
The backface culling and depth testing are enabled to save

rendering time consumption. The 2D texture and colorful
material are switched on to support the color rendering. The
color blending is enabled to realize the transparent effect.

Drawing a polygon with OpenGL is easy. One vertex is
rendered from its normal, texture coordination to its position
coordination. All the vertexes of the polygon are rendered in
turn by counter-clockwise. The surface surrounded by the
polygon is automatically rendered as long as all the vertexes
are rendered. The polygon color should be defined before
rendering. Because OpenGL is a type of language based on
state machines, the settings keep being effect unless they are
modified. As same as the color setting, the texture settings
needed to be loaded only once, too. Multiple texture loadings
are redundant and may result in graph buffers breaking
down.

The transparent effect is a little trouble. The color format
must be changed by manual from RGB to RGBA because
FreeImage has not the related function. The alpha value is
inserted into the color array one by one. The rendering order
is also important: the first is opaque objects; then the depth
buffer is set as read-only mode; finally the transparent
objects are rendered, and the depth buffer resume to the read-
write mode. Realizing the transparent effect is critical to skin
bonding, because the skeleton is visible only when the skin is
rendered as transparent mode.

All the OpenGL commands for rendering can be
temporarily saved as a display list for the following calling.
Each display list has a sole number automatically assigned
by OpenGL. As long as the list number is appointed during
the display refreshing, the corresponding command codes
will be executed in term of the saving. If the rendering need
to be modified, a new list number is assigned after the old
number and the related codes are destroyed. In other words,
the rendering process is separated into two parts: the
background codes preparing and the foreground display
refreshing. The separate operation mode makes the motion
rendering to be very easy. A buffer queue is defined to
saving the display list numbers, each of which corresponds
to a section of codes for motion updating. The timing
samples of motion information are acquired to generate new
display lists which are saved in buffer queue. The list
number at the top of queue is pushed up to execute while
screen updating.

The multi-thread technique is prevalent in GUI program.
The background sampling and GUI displaying are separated
into two different threads to ensure the real-time performance
as possible as it can. A difficult problem is the data
transferring from the background thread to GUI thread. The
data interlocking is the general sharing mechanism, but it is
inefficient to frequently locking and unlocking the shared
data. A new data transferring mechanism based on self-
defined events is designed in the vision feedback system.
wxWidgets supports us to define our own events inherited
from the class wxCommandEvent or wxNotifyEvent.
Different to the common class definition, the event type list
and the event map macro must be declared and defined. When

the new samples are obtained, they are inserted into an
instance of the self-defined event and sent to the aim class by
calling the function wxPostEvent. On the other hand, the aim
class needs to define the event table including the response
function for the self-defined event.

In conclusion, the workflow of motion rendering can be
expressed as following: the data sampled by motion sensors
are loaded in the self-defined event; the event is transferred to
GUI thread; the data carried on the event are used to generate
the display list; the list number is called to update the display.
As long as the motion sensor samples are continually updated,
the human model will show continuous motion. A primary
framework is shown as Fig. 5.

Fig. 5 The motion rendering driven by motion data

VI CONCLUSIONS

The rehabilitation paradigm AAN takes the patient’s
voluntary efforts into account rather than predefining moving
trajectory. A vision feedback system is developed in this study
to inspire patients’ activeness and correct their intentions
during rehabilitation training in term of AAN paradigm. All
the third-party software used in the system is free and open
source, from IDE, GUI, human character to graph rendering.
This mini system can be equipped with portable rehabilitation
robots to decrease the training cost, or used to build more
complex VR environments for rehabilitation. In the future a
new multi-joint motion data sampling system will be
developed as the hardware supplement to free from MTx
sensors.

ACKNOWLEDGMENT

 This study was supported by Kagawa University
Characteristic Prior Research fund 2011, and partially
supported by National Natural Science Foundation of China
(Grant No. 61101022 and 61105087).

REFERENCES

[1] H. S. Lo and S. Q Xie, “Exoskeleton robots for upper-limb rehabilitation:
State of the art and future prospects,” Medical Engineering & Physics,
vol. 34, no. 3, pp. 261-268, April 2012.

[2] R. C. V. Loureiro, W. S. Harwin, K. Nagai and M. Johnson, “Advances in
upper limb stroke rehabilitation: a technology push,” Medical &

Biological Engineering & Computing, vol. 49, no. 10, pp. 1103-1118,
October 2011.

[3] A. C. Lo, P. D. Guarino, L. G. Richards and et al, “Robot-assisted therapy
for long-term upper-limb impairment after stroke in clinic,” The New
England Journal of Medicine, vol. 362, no. 19, pp. 1772-1783, May 2010.

[4] P. S. Lum, C. G. Burgar and P. C. Shor, “Evidence for improved muscle
activation patterns after retraining of reaching movements with the MIME
robotic system in subjects with post-stroke hemiparesis,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 12,
no. 2, pp. 186-194, June 2004.

[5] Z. B. Song and S. X. Guo, “Development of a novel exoskeleton
rehabilitation devices and implementation of bilateral upper limb motor
movement,” Journal of Medical and Biological Engineering, vol. 32, no.
3, 2012, in press.

[6] M. Mihelj, T. Nef and R. Riener, “A novel paradigm for patient-
cooperative control of upper-limb rehabilitation robots,” Advanced
Robotics, vol. 21, no. 8, pp. 843-867, (2007)

[7] L. L. Cai, A. J. Fong, C. K. Otoshi and et al, “Implications of assist-as-
needed robotic step training after a complete spinal cord injury on
intrinsic strategies of motor learning variability,” The Journal of
Neuroscience, vol. 26, no. 41, pp. 10564-10568, October 2006.

[8] H. Sveistrup, “Motor rehabilitation using virtual reality,” Journal of
NeuroEngineering and Rehabilitation, vol. 1, no. 1, pp. 1-10, December
2004.

[9] A. R. Samia and S. Afaf, “Virtual reality use in motor rehabilitation of
neurological disorders: A systematic review,” Middle-East Journal of
Scientific Research, vol. 7, no. 1, pp. 63-70, 2011.

[10]S. K. Ong, Y. Shen, J. Zhang and A.Y.C. Nee, “Augmented reality in
assistive technology and rehabilitation engineering,” Handbook of
Augmented Reality, vol. 2, pp. 603-630, 2011.

[11]M. Trlep, M. Mihelj, U. Puh and M. Munih, “Rehabilitation robot with
patient-cooperative control for bimanual training of hemiparetic subjects,”
Advanced Robotics, vol. 25, no. 15, pp. 1949-1968, 2011.

[12]E. C. Liu, J. F. Sui, Y. Christopher and L. H. Ji, “Double visual feedback
in the rehabilitation of upper limb,” Lecture Notes in Computer Science,
vol. 6768, pp. 384-388, 2011.

[13]R. Secoli, M. H Milot, G. Rosati and D. J. Reinkensmeyer, “Effect of
visual distraction and auditory feedback on patient effort during robot-
assisted movement training after stroke,” Journal of NeuroEngineering
and Rehabilitation, vol. 8, no. 1, pp. 1-10. April 2011.

[14]Y. Q. Tao, H. S. Hu and H. Y. Zhou, “Integration of vision and inertial
sensors for home-based rehabilitation,” in: IEEE International Conference
on Robotics and Automation, Barcelona, Spain, April 18 2005.

[15]B. R. Brewer, M. Fagan, R. L. Klatzky, and Y. Matsuoka, “Perceptual
limits for a robotic rehabilitation environment using visual feedback
distortion,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 13, no. 1, pp. 1-11, March 2005.

[16]H. P. Wu, J. H. Liu, H. Handroos and et al, “Virtual reality based robotic
therapy for stroke rehabilitation an initial study,” in: IEEE International
Conference on Mechatronics and Automation, Beijing, China, August 7-
10 2011.

[17]C. Loconsole, R. Bartalucci, A. Frisoli and M. Bergamasco. “An online
trajectory planning method for visually guided assisted reaching through a
rehabilitation robot,” in: IEEE International Conference on Robotics and
Automation, Shanghai, China, May 9-13, 2011.

[18]E. Vergaro, M. Casadio, V. Squeri and P. Giannoni, “Self-adaptive robot
training of stroke survivors for continuous tracking movements,” Journal
of NeuroEngineering and Rehabilitation, vol. 7, no. 13, pp. 1-12, March
2010.

[19]A. Duschau-Wicke, J. von Zitzewitz, A. Caprez and et al, “Path control: A
method for patient-cooperative robot-aided gait rehabilitation,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 18,
no. 1, pp. 38-48, February 2010.

[20]F. Wang, D. E. Barkana, N. Sarkar, “Impact of visual error augmentation
when integrated with assist-as-needed training method in robot-assisted
rehabilitation,” vol. 18, no. 5, pp. 571-579, October 2010.

[21]I. Baran, J. Popovic, “Automatic rigging and animation of 3d characters,”
ACM Transaction on Graphics, vol. 26, no. 3, pp. 1-8, July 2007.

	Search
	Print

