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Abstract – The patients in bilateral rehabilitation move 
their paretic limbs to follow the trajectory defined by imparetic 
limbs. The robot provides power only when the patients need 
assistance. Capturing the motion posture and feeding back to 
patients through audio or visual modes can raise training 
enthusiasm and activeness and obtain better rehabilitation effect. 
A mini even free vision feedback system is on demand when 
rehabilitation trainings need to be implemented at home. In this 
study a vision feedback system is developed based on open source 
software. The original 3D character is generated by a piece of 
special software Makehuman and exported as several optional 
formats such as obj, mtl, bvh and so on. These exported files are 
re-loaded in a graph interface built with wxWidgets and 
rendered with OpenGL. The motion sensors are fixed on the 
patient’s limbs and the motion data are sampled to update 3D 
model rendering. The patients’ motion posture is shown on a 
screen in real time to prompt their rehabilitation training. The 
new vision feedback system presented in this paper does not 
depend on any commercial software or expensive hardware. As a 
fully open source system, it is very appropriate to realize more 
economical rehabilitation trainings.

Index Terms –Vision Feedback, Open Source, 3D Model, 
Rehabilitation.

I. INTRODUCTION

Stroke is the leading cause of disabilities especially in 
developed countries because of the unhealthy living style. A 
great number of patients survive a first or recurrent stroke and 
suffer from hemiparesis which is the common motor deficit. 
Disabilities in the extremities severely influence daily 
activities. The previous studies have proved that the neurons 
are of plasticity and the motion functions can be recovered by 
iterative motor exercises. Thus more effective rehabilitation 
techniques except for therapists are looked forward to, and the 
prevail supplement is rehabilitation robots [1].  

Most of studies in the past focused on the unilateral 
training in which the rehabilitation actions only performed on 
paretic limbs. Recently, a new suggested therapeutic technique 
is bilateral training which requires two limbs to synchronize in 
rehabilitation actions [2]. Bilateral training has two main 
advantages: the imparetic limb provides the training trajectory 
guiding the paretic limb; two limbs simultaneous training 
encourages the inter-limb coordination. Generating the 
trajectory by imparetic limbs is so convenient that 
independent training at home without therapists attending is 
feasible. The bilateral movement can activate the undamaged 
hemisphere to promote neural plasticity and enhance the 

therapy for damaged hemisphere. A randomized, controlled 
trial involving 127 patients with upper-limb impairment 
receives intensive robot-assisted therapy, intensive 
comparison therapy, and usual care, respectively [3]. At 12 
weeks, the robot-assisted therapy had not more advantages in 
motor function improvement; but over 36 weeks robot-
assisted therapy improved outcomes as compared with usual 
care.

There are many robot researches on bilateral 
rehabilitation. Lum and et al [4] presented the mirror-image 
movement enable (MIME) robotic device and investigated the 
hypothesis that the robotic training improves muscle 
activation. Thirteen stoke survivors trained in MIME 
increased their reach extent and speed. Song and et al [5] 
designed an exoskeleton device with three active DoFs and 
four passive DoFs to assist the paretic limb on the elbow and 
wrist for stroke subjects. At the same time, a haptic device 
(Phantom Premium) was adapted on the intact side to guide 
the motion of paretic limb. The exoskeleton is portable and 
suitable for home-rehabilitation or remote rehabilitation. 
Mihelj and et al [6] proposed and evaluated a new paradigm 
for patient-cooperative control strategy. The patients try their 
best for reaching movements with their own trajectory, and 
the robot helps them only when the training task can not be 
completed. Such minimal intervention principle allows the 
patients’ activeness unless their actions interfere with task 
specifications. Cai and et al [7] proposed a robotic training 
paradigms, assist-as-needed (AAN), to encourage the 
rehabilitation movement variability. Twenty-seven mice were 
collected to test the efficacy of robotic control strategies, and 
found that AAN window paradigm showed the highest level 
of recovery.  

Virtual reality (VR) as a unique medium provides a 
functional, purposeful and motivating context for effective 
rehabilitation intervention. VR can produce simulated, 
interactive and multi-media environments and allow users to 
interact in real time with images modulated by motion sensor 
information [8]. The past studies have demonstrated the VR 
application in the treatment of stroke survivors [9]. 
Furthermore, augmented reality (AR) does not fully pursue 
the immerse sense like VR, and it provides an environment 
with the real and virtual objects coexisting in the real world 
[10]. AR is very useful to rehabilitation systems targeting 
daily living activities.  



Trlep and et al [11] designed a virtual flight simulator 
game using Unity3D software to enhance subject’s 
motivation. In the game one of the planes represents the 
tracker’s pose corresponding to the pose of the bilateral 
handlebars. Liu and et al [12] combined a dual video to meet 
rehabilitation training needs and made the motion analysis 
feed back to the patient in real time. Secolil and et al [13] 
researched on the visual target tracking while receiving 
adaptive assistance from an arm exoskeleton robot. They 
found that incorporating real-time auditory feedback of 
performance errors might improve clinical outcomes. Tao and 
et al [14] introduced a motion tracking system with vision and 
inertial sensors for home based rehabilitation. The experiment 
shows the system can track the 3D arm motion in real time 
with acceptable accuracy compared with the commercial 
marker based system. Brewer and et al [15] constructed a 
controllable visual distortion environment to amplify the 
imperceptible error of the force and position during training. 
They found that the visual distortion can be used to alter a 
patient’s perception of therapeutic exercise under the assist of 
a robot. 

Wu and et al [16] designed VR rehabilitation to enhance 
the effect of mirror therapy. The VR system evokes the 
patient’s motor image and acquires motor abilities. Loconsole 
and et al [17] built a computer vision system recording the 
rehabilitation training with webcam and redisplaying in a 
screen with OpenCV. The reaching target is recognized in 
OpenCV and used as the control goal of the robot. Vergaro 
and et al [18] replicated the picture on the screen that included 
the predefined path, moving target and hand position to 
automatically adapt the man machine interaction forces. 
Duschau-Wicke and et al [19] presented a patient-cooperative 
strategy by showing a compliant virtual wall on a screen. 
Graphical feedback provides visual training instructions to 
encourage larger temporal variability and frees patients from 
the robot control. Wang and et al [20] integrated the visual 
error augmentation with the AAN training in robot-assisted 
rehabilitation system. The visual error augmentation heightens 
the patient’s motivation to improve tracking accuracy.  

Based on the above reviews, we can conclude that the 
vision feedback system play a crucial pole in AAN training 
paradigms besides the patient and robot. It is a close-loop 
system including a VR environment and patient. The 
traditional VR research focuses on game design. But the 
vision feedback system specializes in constructing a vivid 3D 
human model and driving it with motion data. A new vision 
feedback system oriented to rehabilitation application is 
design based on a professional human character and MTx 
sensors. We will present the details about how to generate, 
load and drive a 3D model in the following sections.  

II. OPEN SOURCE GUI PROGRAMMING

Graphical User Interface (GUI) is the core for a vision 
feedback system design. Selecting an appropriate GUI tool is 
not easy because there are so many choices in a Windows-
prevailing age. Three important standards are list for choosing 

a GUI tool: open source, free, powerful enough but not 
cumbersome. Many tasks such as sampling, analysis and 
control are usually embedded in vision feedback systems and 
executed in background, which is different from one-fold 
game design. These background tasks have real time demand. 
The open source GUI can ensure foreground updating fully 
cooperate with background computing. The free GUI can cut 
down the cost of rehabilitation equipments and a mini even 
free vision feedback system is especially appropriate to home 
or remote rehabilitation. A powerful GUI tool can reduce the 
programming burden. But too powerful tool may be redundant 
because the vision feedback system is just a piece of 
lightweight software.  

Taking Microsoft Foundation Classes (MFC) as an 
example, it is a very powerful GUI tool and can perfectly join 
in Windows operation system, but it is fully commercial and 
not open source. QT is another powerful GUI tool with 
commercial and free versions. It is open source and cross 
platform application better than MFC, but too cumbersome to 
deal with vision feedback programming. Fast Light Toolkit 
(FLTK) seems to a good choice, but it is so lightweight that 
not able to support networking, printing etc.  

wxWidgets is considered as the most appropriate GUI for 
vision feedback system design. It is a C++ library with 
bindings for python, java, C# and etc, and can create 
application for Windows, OSX, Linux and UNIX on 32-bit 
and 64-bit architectures as well as mobile platforms. The 
source codes of wxWidgets can be complied as our need to 
various libraries, including the options such as static or 
shared, debug or release, Unicode, OpenGL, ODBC database 
and etc. Based on wxWidgets, the corresponding selections of 
Integrated Development Environment (IDE) and compiler are 
explicit: Code::Blocks (shown in Fig. 1) and Mingw. This 
combination of GUI, IDE and compiler are all free and can 
support many program languages. 

Fig. 1 The interface of Code::Blocks 
Based on wxWidgets as GUI tool, OpenGL is the nature 

choice for graph interface programming. A special class 
wxGLCanvas has been developed in wxWidgets to support 
OpenGL programming. Modifying the compiler configures on 
wxGLCanvas and OpenGL is necessary in custom building. 
Load the OpenGL libraries as usual and the graph rendering 
codes are executed in a class inherited from wxGLCanvas.  

In 3D human model, the graph texture is saved as a 
separate file. The texture files has different formats, so 



loading and transforming them into bitmaps are very 
troublesome. A new piece of third-party software, FreeImage, 
is adopted here to help us make use of the texture file. Just 
like the above candidate tools, FreeImage is also free and 
open source. Not all of the graph format support transparent 
pattern and FreeImage can not automatically add transparent 
feature. Fortunately, a simple operation on bitmap arrays can 
transform color format from RGB to RGBA and the latter 
format supports transparent effect. 

All the software selected is open source and free, and the 
details are shown as Table I.    

TABLE I THE OPEN SOUSE FREE SOFTWARE

The open source free software Application  
Mingw Compiler 

Code::blocks Integrated Development Environment
wxWidgets Graphical User Interface  

wxFormBuilder Rapid Application Development for 
wxWidgets 

OpenGL Graph rendering  
FreeImage popular graphics image formats  

MakeHuman modeling  3D humanoid characters  
STL Standard Template Library 

III. 3D MODEL AND FILE LOADING 

A special 3D model made by professional 3D software is 
much better than the graph directly drawn by OpenGL. The 
vivid human model can realize the immersive visualization 
effect. The commercial 3D software is abundant, but most of 
them are all-purpose and not good at human model. 
Fortunately, a piece of open source free software, Makehuman 
(shown in Fig. 2), specializes in human model making. 
Makehuman supports the easy modification of gender, age, 
tone, weight, height, ethnics and etc. The modeling results are 
exported as several formats: obj, mhx, dae, stl and etc. More 
libraries including clothes, eyes, skin and hair can be used to 
enhance the character details. But the clothes library has a 
shortcoming not being able to envelop the skins. Another 
piece of free software, blender can help to overcome this 
shortcoming with complicated modifications. We give up to 
adding clothes library and hope Makehuman workgroup can 
remedy this function defect as soon as possible.  

Fig. 2 The interface of Makehuman 
The 3D file format has to be carefully selected to match 

the need of vision feedback system. Three selection standards 
are concluded as: skin rendering, skeleton moving and open 

source. The skin rendering is basic to 3D graph display, and a 
great number of polygons compose the mesh as human skin. 
The mesh not bonded with skeletons displays just as static 
graph, and can not follow the rehabilitation actions. So the 
skeleton information corresponding to each section of skins 
need to be saved in mesh file or as a separate file. The open 
source file format is convenient to file loader programming by 
ourselves not depending on commercial loader. Taking 3ds 
format as an example, it consists of mesh and skeleton 
information in one file, so it is often used to design vision 
feedback system. But 3ds format is not open source and the 
loading results are in pieces. Trying to load a locking format is 
undoubtedly harmful to the entire design of the vision 
feedback system. 

Of the format supported by Makehuman, obj and bvh are 
mesh and skeleton file, respectively. An mtl file is exported as 
an appendant of the obj file and it contains the light, color and 
texture information for rendering. A graph file about texture is 
outputted as the supplement of mtl files, and the graph format 
may be jpg, bmp, png and etc. Under normal conditions, four 
files need to be loaded again in vision feedback system to 
recur a vivid character made in Makehuman. They are obj, 
bvh, mtl and png, respectively.  

The obj, bvh and mtl files are ASCII format with special 
designing keywords, so loader programming is not difficult. A 
file stream class is defined and pointed to the file, and then a 
std::iterator from Standard Template Library (STL) is used to 
traverse file stream. The rest task of the loader is to store the 
stream contents in self-defined data structures.

The obj file mainly includes three kinds of definitions: 
vertex, face and group. The vertex has three types: the 
position of each vertex, the UV position of each texture 
coordinate vertex, normals. A list of vertices (at least three) 
and texture vertices define a polygon as a surface. The triangle 
is the common type. Noticeably, only the vertex index is used 
in  surface definition for space saving. A surface set is called 
as a group which has the same materials.  

An obj file is followed by one or more mtl files, from 
which one or more material descriptions are referenced by 
names. The mtl file defines the light reflecting properties for 
computer rendering. The ambient, diffuse and specular color 
of the material are declared as Ka, Kd and Ks, respectively. 
Color definitions are in RGB where each channel's value is 
between 0 and 1. The specular color is weighted using the 
specular coefficient Ns, and multiple illumination models are 
available per material. Textured materials are declared as a 
graph file name, and they belong the same properties as 
above.

Bvh is a type of motion capture file format used to import 
rotational joint data. A bvh file has two parts: a header section 
describing the hierarchy and initial pose of the skeleton; a data 
section containing the motion data. Only the header section is 
needed in vision feedback system, and our own data section 
will be imported to drive the joint. The header section begins 
with the keyword "HIERARCHY", then following the 
keyword "ROOT" and "JOINT". The bvh adopts a recursive 



definition. Each segment of the hierarchy recursively defines 
its children. The first piece of information of a segment is the 
offset from its parent, which begins with the keyword 
"OFFSET".

A class is defined as the basis of the entire file format 
loaders. Then the inherit classes are used to take charge of the 
different formats. The STL container std::vector is the basic 
data structure saving the file contents. Some self-defined 
structures are used to transfer the useful information to the 
display and control program in the following.  

IV. BONDING THE SKIN AND SKELETON

The skin and skeleton data are independently loaded 
from different files. They are separately stored in isolated data 
structures without any connection. Bonding is in fact a 
process rebuilding the connection between skin and skeleton. 
The bonding process has two steps: matching and weighing. 
The matching is a step finding the map from skin to skeleton. 
Any piece of skin must be connected with at least one 
skeleton, or it can not be driven to follow the human move 
and action. The weighing is a step computing the weight 
between the skin and its mapping skeletons. The skin at joints 
is a typical example which is connected with two or more 
skeletons. So the membership degree to different skeletons 
needs to be described by a weight coefficient. 

Sometimes the skeleton information is not available and 
the center lines are computed to make up for the absentation 
of skeleton information. Accidentally only a general skeleton 
is available without the appropriate scale and pose setting. The 
additional zooming and rotating operations is needed during 
matching process to carefully adjust skeletons. Fortunately, 
Makehuman has already appointed a special skeleton 
hierarchy for each 3D human model. In other words, the 
skeleton adjustment is finished by Makehuman and the rest 
task is just to determine the map relationship. The min-
distance is the usual rule for automatic defining map, but it 
may fail in some human pose. For example, the skin at body 
sides may be mapped to upper limb skeletons when two arms 
clinging to the body. The bounding box is another bonding 
method. Its computation is simple but the bonding precision is 
not satisfying.  

A bonding interface based on dialog frameworks is 
developed to replace the automatic bonding. The man-
machine interaction through the bonding dialog realizes a type 
of manual bonding one by one. The bonding dialog includes 
three parts as shown in Fig. 3 : skeleton tree, skin database 
and map list. All the skeletons loaded from bvh file are 
displayed as a tree hierarchy that can be realized by the class 
wxTreeCtrl. Both the skin database and map list are in fact the 
lists inherited from the class wxListCtrl. The inserting and 
deleting operations of wxListCtrl depend on the component 
position. When multiple components are deleted at the same 
time, the position updating can not follow on time the deleting 
operation and often result in error deleting. A STL container, 
std::map is used as the background data structure for 
synchronizing the list updating. When the deleting command 

is sent, it is firstly executed in the std::map, and then the 
corresponding list is fully refreshed by the background 
contents. 

All the skin blocks not being bonded is temporally stored 
in the skin database. The user can switch the map list by 
double clicking the tree node. When the skin block is selected 
and inserted into the map list, it has been bonded to the 
current skeleton. The inner data structure of the current 
skeleton synchronously updates the bonding information. If 
the bonding information needs to be modified, the skins can 
be deleted from the map list to release the bonding.  

Fig. 3 The bonding interface 
The skeleton hierarchy is displayed as matchstick shape. 

The skeleton is on the center axis of the skin surface and is 
covered by skins when natural displaying. The skins are set to 
be transparent and help us to clarify the map relationship. 
Multiple display modes are set as Fig. 4 to distinguish the 
bonding stages. All the skins are in grey color by default; the 
skin selected is in highlight yellow color and the skin bonded 
is in texture mode. The model loaded is three-dimension so 
some skins can not been seen from the front, and it can be 
freely rotated by mouse grasping to show the back skin. When 
all the skins are scattered one by one into the map list, the 
bonding task is finished and the bonding result is saved as a 
text file. The bonding information will be loaded again during 
loading the human model.  

Fig. 4 The coloring style for bonding process 
The principle of bonding algorithm can be described as 

the following equation: 
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v is the coordination of the skin vertex; M is the transform 
matrix of the skeleton; w is the weight and i is the number of 
the skeleton. The superscripts old and new represent the 
original and current positions, respectively.  

There are two bonding weight: rigid and flexible. The 
rigid bonding means that the skin is bonded with the sole 
skeleton and the weight is set as 1. The rigid weight is rough 
and may result in the skin distorting. The flexible weight is 
more reasonable as well as more complex. There are many 
expert weighting computation algorithms in commercial 
software. Here only line bonding algorithm, template fitting, 
is introduced.  

Baran and et al [21] present a new weighting 
computation: simulating template fitting. The human model is 
considered as a thermal conductor. The template of heating 
skeleton i is 1, and the template of the others is 0. After fitting, 
the template at each vertex is set as the weight originated from 
skeleton i. The weighting computation equation is  

i i iw u w�� � �H .                                   (2) 
Where is Laplace operator; u is a vector and 1i

ju � if the 

skeleton i is the closest to vertex j, or 0i
ju � . H is a diagonal 

matrix and jjH  is the template weight from vertex j to the 

closest skeleton. Usually 2
jj jiH c w� 	  and the const c is set as 

0.105~0.385. When the linear weight is added, the skin 
deformation at joints will be more realistic. 

V. DATA-DRIVEN MOTION RENDERING

After all the 3D model files are successfully loaded, the 
information has been preserved in data structures, and the 
skins have been bonded with appropriate weights. The left 
task is to render the human model on the screen. A panel is 
created in the man-machine interface as wxGLCanvas’s parent 
window. When the wxGLCanvas instance is constructed, a 
function SetCurrent is called to set the instance as the context 
environment for rendering. Then all kinds of OpenGL 
commands are called to set up the implicit state for rendering 
context.  

OpenGL provides three transformation functions: the 
translating function glTranslate; the rotating function glRotate 
and the scale zooming function glScale. OpenGL provides 
four transformation types: the viewing transformation; the 
modeling transformation; the projection transformation and 
the viewport transformation. Before each transformation is 
implemented, the function glLoadIdentity must be called to set 
the current matrix as the identity one. By these transformation 
types, the 3D model can be displayed as a 2D graph in a 
screen.

Before beginning the graph rendering, many environment 
settings are needed to initialize. The lighter is turned on and 
its attributes are set based on what the mtl file defines. The 
color and depth buffers are cleared by the prior setting value. 
The backface culling and depth testing are enabled to save 

rendering time consumption. The 2D texture and colorful 
material are switched on to support the color rendering. The 
color blending is enabled to realize the transparent effect.

Drawing a polygon with OpenGL is easy. One vertex is 
rendered from its normal, texture coordination to its position 
coordination. All the vertexes of the polygon are rendered in 
turn by counter-clockwise. The surface surrounded by the 
polygon is automatically rendered as long as all the vertexes 
are rendered. The polygon color should be defined before 
rendering. Because OpenGL is a type of language based on 
state machines, the settings keep being effect unless they are 
modified. As same as the color setting, the texture settings 
needed to be loaded only once, too. Multiple texture loadings 
are redundant and may result in graph buffers breaking 
down.

The transparent effect is a little trouble. The color format 
must be changed by manual from RGB to RGBA because 
FreeImage has not the related function. The alpha value is 
inserted into the color array one by one. The rendering order 
is also important: the first is opaque objects; then the depth 
buffer is set as read-only mode; finally the transparent 
objects are rendered, and the depth buffer resume to the read-
write mode. Realizing the transparent effect is critical to skin 
bonding, because the skeleton is visible only when the skin is 
rendered as transparent mode.  

All the OpenGL commands for rendering can be 
temporarily saved as a display list for the following calling. 
Each display list has a sole number automatically assigned 
by OpenGL. As long as the list number is appointed during 
the display refreshing, the corresponding command codes 
will be executed in term of the saving. If the rendering need 
to be modified, a new list number is assigned after the old 
number and the related codes are destroyed. In other words, 
the rendering process is separated into two parts: the 
background codes preparing and the foreground display 
refreshing. The separate operation mode makes the motion 
rendering to be very easy. A buffer queue is defined to 
saving the display list numbers, each of which corresponds 
to a section of codes for motion updating. The timing 
samples of motion information are acquired to generate new 
display lists which are saved in buffer queue. The list 
number at the top of queue is pushed up to execute while 
screen updating.  

The multi-thread technique is prevalent in GUI program. 
The background sampling and GUI displaying are separated 
into two different threads to ensure the real-time performance 
as possible as it can. A difficult problem is the data 
transferring from the background thread to GUI thread. The 
data interlocking is the general sharing mechanism, but it is 
inefficient to frequently locking and unlocking the shared 
data. A new data transferring mechanism based on self-
defined events is designed in the vision feedback system. 
wxWidgets supports us to define our own events inherited 
from the class wxCommandEvent or wxNotifyEvent. 
Different to the common class definition, the event type list 
and the event map macro must be declared and defined. When 



the new samples are obtained, they are inserted into an 
instance of the self-defined event and sent to the aim class by 
calling the function wxPostEvent. On the other hand, the aim 
class needs to define the event table including the response 
function for the self-defined event.

In conclusion, the workflow of motion rendering can be 
expressed as following: the data sampled by motion sensors 
are loaded in the self-defined event; the event is transferred to 
GUI thread; the data carried on the event are used to generate 
the display list; the list number is called to update the display. 
As long as the motion sensor samples are continually updated, 
the human model will show continuous motion. A primary 
framework is shown as Fig. 5. 

Fig. 5 The motion rendering driven by motion data 

VI CONCLUSIONS

The rehabilitation paradigm AAN takes the patient’s 
voluntary efforts into account rather than predefining moving 
trajectory. A vision feedback system is developed in this study 
to inspire patients’ activeness and correct their intentions 
during rehabilitation training in term of AAN paradigm. All 
the third-party software used in the system is free and open 
source, from IDE, GUI, human character to graph rendering. 
This mini system can be equipped with portable rehabilitation 
robots to decrease the training cost, or used to build more 
complex VR environments for rehabilitation. In the future a 
new multi-joint motion data sampling system will be 
developed as the hardware supplement to free from MTx 
sensors.
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