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Abstract— The surface electromyographic (sEMG) signal has 
been researched in many fields, such as medical diagnoses and 
prostheses control. In this paper, recognition of motion of 
human upper limb by processing sEMG signal in real time was 
proposed for application in bilateral rehabilitation, in which 
hemiplegia patients trained their impaired limbs by 
rehabilitation device based on motion of the intact limbs. In the 
processing of feature exaction of sEMG, Wavelet packet 
transform (WPT) and autoregressive (AR) model were used. 
The effect of feature exaction with both methods was discussed 
through the processing of classification where 
Back-propagation Neural Networks were trained. The 
experimental results show both methods can obtain reliable 
accuracy of motion pattern recognition. Moreover, on the 
experimental condition, the recognized accuracy of WPT is 
higher than that of AR model.  

I. INTRODUCTION

Bilateral rehabilitation for hemiplegia patients is an idea 
that involvement of the unaffected upper limb facilitates 
learning the spatial and temporal parameters required for 
motor recovery of the affected limb [1]. Many strong 
evidences existed indicate that bilateral training is effective in 
functional recovery of the upper limb for hemiplegia patients 
[2]-[4]. It has some advantages besides the active effect on 
neuro-rehabilitation. First, the rehabilitation strategy derives 
from individual so that more reasonable training approach can 
be provided to rehabilitation for affected limb. Second, this 
kind of rehabilitation decreases the therapist’s labor intensity 
so that it saves medical treatment. Last, it can enhance the 
patient’s interest to rehabilitation and avoid the problem that 
the patient unconsciously compensates for the affected limb to 
complete the tasks with unaffected limb [5].   

According to systematic reviews, few rehabilitation robots 
have been adapted for bilateral training [6]. The MIME is one 
such robot [7], [8]. However, the MIME is an adapted PUMA 
robot as rehabilitation device in affected side; and in the 
unaffected side, the upper limb is constrained by a forearm 
splint which could decrease the patient’s enthusiasm. As 
biological signals, electromyography (EMG) is more benefit to 
reflect the activation of skeletal muscle than other sensors. 
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Figure 1.   the Upper Limb Exoskeleton Rehabilitation Device (ULERD)

In this paper, surface electromyography (sEMG) signals 
derived from the unaffected upper limb were employed and 
then drove the rehabilitation device mounted on the affected 
upper limb as control signal. Therefore, the processing of 
sEMG signals is important and dominant in this paper which 
means the motion pattern recognition of the upper limb based 
on sEMG signals. The achievement of this research will be 
applied in an exoskeleton device (Figure 1) which we have 
developed in previous work [9]-[11]. It can provide assistance 
or resistance in three kinds of motion of human’s upper limb. 

The real time processing of EMG mainly includes four 
phases: signal acquisition, signal segmentation, feature 
extraction and classification. In the first phase (signal 
acquisition), there are two methods: invasively and 
non-invasively. During the second phase of signal 
segmentation, there are also two methods: disjoint and 
overlapped. Disjoint segmentation means that segments are 
divided in a certain length; overlapped segmentation means 
next segment slides over the current segment with a certain 
length which is shorter than that of segmentation. Oskoei and 
Hu assessed these two kinds of methods by comparing 
classification performance [12]. They indicated that the 
classification performance of overlapped segmentation is 
higher than that of disjoint segmentation. In the third phase of 
feature extraction, there are many methods proposed many 
years ago. In general, they can be separated into three types: 
time domain, frequency domain and time-frequency domain 
according to analysis method [13]. The methods of time 
domain mainly include Integrated EMG (IEMG), Mean 
Absolute Value (MAV), Modified Mean Absolute Value 
(MMAV) and so on [13]-[17]. The methods of frequency 
domain mainly include Auto-Regressive coefficients (AR), 
frequency Median (FMD), Modified Frequency Median 
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(MFMD) and so on [16] [17]. The methods of time-frequency 
domain were developed based on that in frequency domain 
and include Short Time Fourier Transform (STFT), Wavelet 
Transform (WT) and Wavelet Packet Transform (WPT) 
[18]-[20]. In the forth phase, there are many methods which 
are suitable for classification and attract many researcher to 
work on. The typical method is Artificial Neural Network 
(ANN) which is good at dealing with nonlinear problems [21]. 
Besides it, there are Bayesian classifier (BC), Fuzzy Logic 
Classifier (FLC) and Support Vector Machines (SVM) 
[22]-[24]. 

The EMG signal can be used widely, like multifunction 
prosthesis, wheelchairs, grasping control and gesture-based 
interfaces and so on [25]. In the application of rehabilitation, 
Krebs et al. [26] proposed a kind of rehabilitation system for 
upper limb motion for stroke survivors using EMG signals. In 
this filed, one problem is important and almost of researcher 
should be faced, which is how to process, analyze signal and 
identify the motion in real-time. Panagiotis K. Artemiadis et al. 
[27] proposed a methodology for the control of robots, in 
position and force using EMG signals from muscles of the 
shoulder and elbow and a switching model is used for 
decoding muscular activity to both joint angles and force 
exerted from the human upper limb to the environment. 
Hyeon-Jae Yu et al. [28] also proposed another real time 
tracking algorithm for human arm motion using EMG signals 
from upper arm and shoulder. Jiaxin Jiang et al. [29] used a 
four-layer feed-forward neural network which is processed by 
the wavelet transform to control exoskeleton knee using EMG 
signals in real time.  

In this chapter, as the preliminary research of bilateral 
rehabilitation, three motions of unaffected upper limb are 
performed without any constraint and the sEMG signals 
related to these motions were recorded and analyzed by using 
AR model and WPT. Motion classification tool based 
Artificial Neural Network (ANN) was trained. Many facts 
can affect the quality of sEMG acquisition. Therefore, in this 
paper, there are two main phases to implement the motion 
pattern recognition in real time. One is batch processing, in 
this phase, ANN which can recognize the motion in current is 
trained automatically with an inertia sensor. In real time 
processing, the trained ANN previously is used to recognize 
the motion in real time without changing the current 
experimental condition. The first part of this paper presents 
the research target and relative researches. In the second part, 
the methodology of sEMG signals processing was presented. 
The third part shows the experimental setup and processing. 
The forth part shows the proposed exoskeleton device for 
upper limb rehabilitation. The last part is the conclusions. 

II. METHODOLOGY OF SEMG SIGNALS PROCESSING

A. Wavelet packet transform and feature extraction 
Wavelet was proposed based on the Short Time Fourier 
Transform (STFT) and it can be expressed as an infinite series 
of wavelets. The principle of wavelet transform is shifting 
and dilating one signal function which is called mother 
wavelet (1). 

Figure 2.   Decomposition tree and the four level of decompositions[33] 

The wavelet can deal with the de-noising problem 
optimally with principle that it attempts to remove whatever 
noise is present and retain whatever signal is present without 
regarding the frequency content of the signal [30]. There are 
several kinds of mother wavelet proposed by some 
researchers [31], [32].  
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where x(t) is the function representing the input signal, �� is
the complex conjugate of the mother wavelet function, and 

)/)(( abt �� is the shifted and scaled version of the 
wavelet at time b and scale a. The Discrete Wavelet 
Transform (DWT) is a transformation of the original 
temporal signal into a wavelet basis space. It decomposes a 
signal into an approximation signal and a detail signal and the 
approximation signal is divided again. Wavelet Packet 
Transform (WPT) is a generalized version of the Discrete 
Wavelet Transform (DWT). It generates a full wavelet basis 
decomposition tree. In each scale, not only the approximation 
signal as in DWT, but also the detail signals are filtered to 
obtain another two low and high frequency signals (Figure 2).  

Given an EMG signal s(t), whose scaling space is 
assumed as 0

0U , wavelet packet transform can decompose 
0
0U  into small subspaces in dichotomous way, which can be 

calculated  according to (2). 
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Where the function )(0 tu can be identified with the scaling 

function � and )(1 tu with the mother wavelet 
 .



)( kh and )( kg are the coefficients of the low-pass and the 
high-pass filters respectively. The sub-signal at 1�

�
n

jU , the nth 
subspace on the jth level, can be reconstructed by (4). 
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Where )(, tkj
 is the wavelet function, nj
kD , was the wavelet 

packet coefficients at 1�n
jU , which can be calculated by (5). 

�
�

��
� dtttsD kj

nj
k )()( ,

, 
            (5) 

Most common approach of feature extraction of sEMG 
using WPT is entropy of wavelet packet coefficients. In this 
paper, we utilized MAV (6) and VAR (7) of wavelet packet 
coefficients with overlapped segmentation as feature vector 
to improve the response of real time recognition and effect of 
recognition.  
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B. AR model and feature extraction 
Auto-Regressive model (AR) is known in the filter design 

industry as an infinite impulse response filter (IIR) or an all 
pole filter and it is an effective approach for decomposing the 
stochastic and non-stationary time sequences such as sEMG 
[34].  

The definition that will be used here is as follows  

                )()()(
1

nuinyany p

i i ���� � �
             (8) 

Where ia  are the auto-regression coefficients, which is 
utilized as feature vector of sEMG signals. )(ny  is the series 
of sEMG signals, and p  is the order of the filter which is 
generally very much less than the length of the series. )(nu  is 
white noise. There are many methods to obtain optimized p ,
such as Final Prediction Error Criterion (FPE) [35] and 
Akaike Information Criterion (AIC) [36. It is considered that 
four as order of the AR model can get a trade-off between 
effect and calculation cost. 

C. Artificial Neural Networks and feature classification 
An artificial neural network is a mathematical and 

computational model that is inspired by the structure of 
biological neural networks [37]. It is usually used to model 
nonlinear and complicated relationships between inputs and 
outputs and also widely utilized in pattern recognition. The 
most widely used neural network is the multi-layer perceptron. 
Through relative literature, the multi-layer feedforward 
network with Back Propagation seems the most widely used in 
pattern recognition. In this paper, an ANN of three-layers was 

designed: input layer, hidden layer and output layer. The input 
vectors derive from processed outcome of the feature 
extracted by WPT and AR model. Corresponding target 
vectors are generated automatically by using the data detected 
by an inertia sensor. Accordingly, the ANN can be trained 
until it approximates a function with specific output vector. 
There is no specific method to determine the optimized nodes 
number in hidden neurons, therefore, an optimized nodes 
number was obtained through many experiments of selecting 
different number. It was found that the ANN with 20 bidden 
neuros generates the most optimized train outcome. To avoid 
over fitting, all the input vectors are divided into three parts: 
70% for training, 15% for evaluation and 15% for testing. The 
ANN is trained in the batch processing and it is used to 
classify the feature of sEMG in real time processing. 

III. EXPERIMENTS

A. SEMG acquisition  
The sEMG signals were recoded by using the bipolar 

surface electrodes with 12mm in diameter, located 18mm 
apart, and the sampling rate is 1000Hz (Figure 3). The 
electrodes are reusable and they are adhered to relative 
muscles and a reference electrode is adhered to body where no 
muscles exist as ground signal. The sampling data were 
pre-processed with a commercial sEMG acquisition and filter 
device (Oisaka Electronic Device Ltd. Japan.) with 8 channels  
before read to the processing program with the sampling rate 
of 1000Hz (as the most frequency power of EMG signals are 
between 20 to 150Hz ) through an AD sampling board 
( PCI3165, Interface Co. Japan). In order to have a good skin 
contact with the electrodes, the subject’s skin was shaved and 
cleaned with an alcohol swab. 

Figure 3.   Experimental setup of sEMG acquisition 

Figure 4.   Three kinds of motion of the upper limb 



TABLE I. AVERAGE RECOGNITION RATE FOR THREE MOTIONS

Motion Muscles 
EFE Biceps brachii/triceps brachii 

WFE Extensor carpi ulnaris 
Extensor carpi radialis 

WPS 
Biceps brachii 

Extensor carpi radialis 
Anconeus muscle 

B. Experimental process 
The aim of this research is to do preparesion for bilateral 

rehabilitation for upper limb based on sEMG signals derived 
from the unaffected limb. According, we invited five healthy 
subjects to participate in the experiments which include three 
kinds motion recognition of the upper limb: Elbow Flexion 
and Extension (EFE), Wrist Flexion and Extension (WFE) and 
Wrist Pronation and Supination (WPS) (Figure 4).  Detected 
muscles of three motions are shown in Table I. 

All the subjects were required to perform the motions 
mentioned above without any constraint on their limbs. Each 
motion was performed 15 times. In elbow flexion and 
extension, every subject was required to lift his forearm from 
vertical plane to horizontal plane with upper arm stable and 
then extended it to original position (Figure 4 (1) and (2)). 
There are four motion patterns to be recognized: stop, flexion, 
stop on the horizontal plane and extension (S, F, SH and E). In 
forearm pronation and supination motion, every subject was 
required to perform motion from the status at (Figure 4 (4)) to 
(Figure 4 (3)) and return back and then from original pose to 
the pose at (Figure 4(5)) and last return back again. During this 
process, there are three motion patterns to be recognized: stop, 
pronation and supination (S, P and SP). In wrist flexion and 
extension, every subject was required to perform the motions 
like forearm pronation and supination and it also includes 
three motion patterns (S, F and E). During all of experiments, 
the motions of upper limbs were detected with an inertia 
sensor, which can be used to divide the motion and provide 
target vectors for ANN. Transfer function used in ANN is 
shown in (9).  

      1))*2exp(1/(2)sin( ���� nnTan       (9) 

Where n is the weighted sum of the inputs. Since situation of 
electrodes contact with a subject’s skin can influence the 
qualities of sEMG, building the new ANN to each 
experimental condition will improve the outcome of 
recognition. It is not only suitable to each subject, but also 
suitable to each experiment. To implement it, there are two 
phases (Figure 5). The first phase is batch processing. During 
this phase, motion of upper limb can be detected and divided 
by using the inertia sensor automatically according to the 
desired patterns mentioned above. On the other hand, sEMG 
signals collected synchronously are processed with two 
methods: AR model and wavelet packet transform. After the 
motion finished, sEMG signals are processed with divided in a 
slide window. To compare the recognition rate of both 
methods, the same slide window (250 samplings) was set. 

Figure  5. The flowchart of implementation of motion recognition 

Therefore time delay was within 300ms and the structure of 
ANN and the transfer function are the same. The mother 
wavelet selected is Daubechies 2. According, the input matrix 
is the coefficients of AR model and MAV and VAR of 
coefficients of WPT respectively; the target matrix is the 
segmentation of motion which is group of binary data. After 
the ANN built, real time processing can be carried out. Once 
data of sEMG collected filled in the slide window, feature 
extraction and motion recognition are performed by using the 
trained ANN.  

IV. EXPERIMENTAL RESULTS

Each subject was required three kinds of motion and ten 
motion patterns should be recognized in total. Each motion 
was performed 15 times by each subject and the subject can 
rest 30 seconds after finishing one motion so that he did not 
feel tired.  

Following figures show the typical experimental results 
for subject A. Figure 6 (a) shows the angle of elbow flexion 
and extension. In this figure, there are four motion patterns: 
stop, flexion, stop on the horizontal plane and extension (S, F, 
SH and E), which can be divided automatically by using the 
inertia sensor. Figure 6 (b) shows the sEMG signal collected 
from triceps and biceps brachii during EFE. From this figure, 
the signal noise ratio (SNR) is low because this motion is 
performed at slow speed and no any additional load exerted to 
the subject’s limb. It is difficult to recognize the motion under 
this condition but it is useful in activity of daily living (ADL). 
The response of biceps brachii is more active than triceps 
brachii. As the typical signal, coefficients of AR model which 
was as input vectors of ANN was shown in Figure 6 (c). There 
are four groups of coefficients because AR model was selected 
with order 4. Figure 6 (d) also presented the processed results 
of sEMG detected from biceps brachii. Because the effective 
sEMG signals focus on 20 to 150Hz, the components of low 
frequency were selected and its MAV data were shown in 
Figure 6 (d).  

Figure 6 shows the typical experimental results of wrist 
flexion and extension. In the experiment of wrist flexion and 
extension, there are three motion patterns to be recognized. 
First is relaxing posture with palm in the horizontal plane 
(Figure 4 (7)), which is shown as “S” in Figure 7 (a). Second 
is flexion motion from status on Figure 4 (7) to status on 
Figure 4 (6) and then come back to Figure 4 (7) which is 
shown as “F” in Figure 7 (a). Third is extension motion from 
status on Figure 4 (7) to status on Figure 4 (8) and then come 
back to Figure 4 (7) which is shown as “E” in Figure 7 (a).  



(a)                                                         (b) 

   
(c)                                                         (d)

Figure  6. One typical experimental results of elbow flexion and extension. (a) 
shows the angel of elbow flexion and extension; (b)shows the sEMG signal 
derived from triceps and biceps brachii during EFE; (c) shows coefficients of 
AR model derived from processing of sEMG signals of biceps brachii; (d) 
shows the MAV of coefficients of WPT of sEMG signals of biceps brachii.

(a)                                                         (b)

(c)                                                         (d)

Figure 7. One typical experimental results of wrist flexion and extension. (a) 
shows the angel of wrist flexion and extension; (b)shows the sEMG signal 
derived from extensor carpi ulnaris and extensor carpi radialis during WFE; 
(c) shows coefficients of AR model derived from processing of sEMG signals 
of extensor carpi radialis; (d) shows the MAV and VAR of coefficients of 
WPT of sEMG signals of extensor carpi radialis.

Figure 7 (a) shows the angle of wrist flexion and extension. 
Figure 7 (b) shows the sEMG signals from extensor carpi 
ulnaris and extensor carpi radialis during this motion. Figure 7 
(c) and figure 7 (d) show the coefficients of AR model and 
MAV of coefficients of WPT of sEMG signals derived from 
extensor carpi radialis. 

In the experiment of wrist pronation and supination, we 
found it is difficult to get effective sEMG signal from extensor 
carpi radialis and anconeus muscle under a free condition. 
According, we detected the sEMG from biceps brachii with 
the forearm of a subject on horizontal plane. Figure 8 shows 
the typical experimental results of WPS. 

(a)                                                         (b)

    
(c)                                                         (d)

Figure  8. One typical experimental results of wrist pronation and supination. 
(a) shows the angel of wrist pronation and supination; (b)shows the sEMG 
signal derived from biceps brachii, extensor carpi radialis and anconeus 
muscle during WPS; (c) shows coefficients of AR model derived from 
processing of sEMG signals of anconeus muscle; (d) shows the MAV of 
coefficients of WPT of sEMG signals of anconeus muscle. 

TABLE II. VERAGE RECOGNITION RATE FOR THREE MOTIONS

Subjects Motion Elbow F/E Forearm P/S Wrist F/E
AR 74.5% 91.4% 90.7% A WPT 78.2% 93.8% 95.4% 
AR 73.1% 87.8% 86.6% B WPT 79.4% 91.4% 93.2% 
AR 77.4% 90.1% 89.9% C WPT 81.0% 92.0% 94.4% 
AR 74.0% 89.7% 91.2% D WPT 84.9% 92.8% 94.5% 
AR 82.1% 92.7% 91.8% E WPT 87.7% 93.1% 96.7% 

From the Table II, recognition of wrist flexion/extension 
gained the highest rate and the elbow flexion/extension was 
recognized in the lowest rate. Because the motion patterns in 
elbow flexion and extension recognized are more than the 
other two motions, the recognition rate of former is lower than 
the other two motions. Especially, we found it is difficult to 
recognize when the extension happened, which means the 
sEMG signals hardly changed from “SH” to “E”, so that it is 
time delay to recognize the elbow extension in real time 
processing. Another important result which can be found in 
Table II is that the recognition ratio with WPT is higher than 
that with AR model. Maybe because the WPT can not only 
exact the feature of motion but also filter the undesired signals 
according to its lower filter function. The recognition rate 
online is not stable and not as high as that in the case of 
off-line. 

V. CONCLUSION

sEMG signals has a widespread application like muscle 
diagnosing, human machine interface. In this paper, we 
presented motion patterns recognition based on sEMG, which 
aims to implement the bilateral training. In special we focused 
on the feature exaction of three kinds of motion by using 



Autoregress (AR) model and Wavelet Packet Transform 
(WPT). We used an inertia sensor to track and record all the 
motions and divide the motions into several segments to train 
the Artificial Neural Network (ANN) as target vectors. In 
order to improve the effect of the ANN, we designed 
experiments with two phases so that the effect of contact 
condition of electrodes with skin can be avoided. According to 
the experimental results, the recognition rate of wrist flexion 
and extension is the highest. The recognition rate of elbow 
flexion and extension is lower because the statuses to be 
recognized are more than the other. On the other hand, the 
recognition ratio using coefficients of wavelet packet 
transform as input of artificial neural network is higher than 
that of using parameters of AR model.  
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