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Abstract—Central pattern generator (CPG) models have 
been designed at abstract levels of the rhythm phenomena and 
widely applied in robot control. The robot controlled with a 
CPG model is hard to perceive and respond to the motion 
intention coming from human beings. A new CPG model driven 
by surface electromyography (sEMG) was presented in this 
paper to manipulate robots more favorably without loss of their 
autonomous capability. The CPG model was designed based on 
an echo state network (ESN) which was a large, random, 
recurrent neural network. The frequency modulating from 
inputs to outputs was researched in this study. It was illustrated 
that ESNs could learn and generalize the frequency transition 
pattern. The flexion and extension motion of forearms and the 
sEMG at biceps and triceps muscles were sampled as the 
teacher signals to train the CPG model. The prediction error of 
the trained model was analyzed carefully and the model output 
was applied to control a rehabilitation exoskeleton. Finally, the 
future work was discussed on the model structure optimizing.  

I. INTRODUCTION 
ENTRAL pattern generators (CPGs) [1] are neuronal 
circuits in peripheral nervous systems that can be 

activated to produce rhythmic motor patterns such as walking, 
breathing, chewing, digesting, even speaking and writing. 
CPGs are able to automatically operate without any sensory 
inputs and persistently output motor commands. CPGs under 
the control of higher brain centers are adaptive to 
environment perturbations. These general principals on CPGs 
have already been testified in the study of invertebrates and 
vertebrates.  

CPGs bring many inspirations for robot research and lead 
to many interesting interactions between two fields [2]. CPG 
models are increasingly used in robotic communities to 
control different types of robots and different modes of 
locomotion. For instances: hexapod and octopod robots, 
swimming robots, quadruped walking control, humanoid 
robots and etc. CPG models exhibit limit cycle behavior with 
a few control parameters, so they are suited for distributed 
implementation and can be entrained with sensory feedback 
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signals.  
CPG models have been designed at several abstract levels 

of the rhythmic phenomena under study. The neuron models 
[3] and connectionist models [4] root in micro biology 
phenomena and try to provide simple and reasonable 
explanations. Oscillator models [5] focus on population 
dynamics based on mathematical models of coupled 
nonlinear oscillators. Phase-locking between those oscillators 
generates complex motion patterns being able to apply in 
robot control. Such motion controls are often restricted to low 
dimensional motions because of the complexity limitation of 
the models. A new CPG implementation based on deep belief 
nets was presented to generate high dimensional human 
motions with unsupervised learning [6]. 

Recently, an echo state network (ESN) pattern generator 
was developed to capture the high dimensional nature of 
CPGs. Moreover, it could be modulated along control 
dimensions [7]. ESN, liquid state machines and back- 
propagation decorrelation were unified as reservoir 
computing, which was widely applied in autonomous robot 
localization, map, path plan and navigation [8, 9]. Wyffels 
and et al [10] designed a CPG model based on ESNs to learn 
the human motion data from CMU Graphics Lab Motion 
Capture Database [11]. The resulting system was able to 
generate human motions with multi-DOF and robust against 
perturbations. Waegeman and et al [12] improved the CPG 
model in reference [10] to generate both rhythmic and 
discrete patterns. A limit cycle attractor and a fixed point 
attractor were embedded in one ESN as the projection of 
rhythmic motions and discrete motions, respectively. 

A robot controlled by CPG models has autonomous 
behavior modes, but it can not perceive the intentions coming 
from human beings. If human motion intentions are exacted 
as the driving signal of CPG models, the robot can actively 
response to human actions, or be commanded and 
manipulated by human beings. In fact, the chemical 
downward neuronmodulators supervise the CPG in spinal 
cords to match the phase of neural controllers with the body 
dynamics. Pitti and et al [13] replicated this control strategy 
based on phase synchronization as an implement of 
neuromodulators to employ in robot control. Ronsse and et al 
[14] designed an adaptive oscillator able to observe and track 
the frequency and phase of input signals synchronously. The 
elbow position was acquired as input signal to drive the 
adaptive oscillator and control an assistive exoskeleton.  

Based on the above discussion, a conclusion can be drawn 
that a data-driven CPG model is accord with the 
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neurophysiology principle and can lead to better control of 
robots especially in human-robot interaction. In this study, 
surface electromyography (sEMG) signals are considered as 
the driving input of CPG models. SEMG is the common 
candidate for motion intention recognition and often applied 
in all kinds of human-robot interfaces. Cavallaro and et al 
[15] mapped sEMG signals with a neuron-musculo-skeletal 
model as joint torques to directly control exoskeletons. 
Fukuda and et al [16] acquired the sEMG signal from a group 
of muscles to identify the joint positions for prosthesis control. 
Artemiadis and et al [17] exacted the time varying features of 
sEMG signals as muscle activations to identify a state space 
model for robot control. Zhang and et al [18] entrained the 
neural oscillator reciprocally with sEMG signals to 
adaptively shape the functional electrical stimulation pattern 
and suppress the joint tremor. The model in reference [18] is 
in fact a type of CPG driven by EMG.  

Oriented to the control issue of robots especially 
exoskeletons, a new CPG model driven by EMG is presented 
in this study based on an ESN. While a robot is endowed with 
autonomous capability by our CPG model, it is also under the 
control of human motor commands because the embedded 
CPG is driven by sEMG signals. In section II, the modeling 
method will be described in detail, and two typical examples 
are analyzed in section III. Final is the conclusion. 

II. METHODS 

A. Basic structure of ESN 
The core of ESNs is a large, random, recurrent neural 

network as an excitable medium which is like a reservoir as 
shown in Fig.1. The reservoir is able to reserve a 
high-dimensional collection of nonlinear states xi(t) 
influenced by input signals u(t), and any desired output y(t) 
can be combined by training output function with a simple 
learning algorithm. ESNs were firstly presented by Jaeger 
and et al [19] in 2004, and a leaky-integrator version was built 
in 2007 to learn slow features [20]. ESNs have the ability to 
process temporal patterns in a fashion similar to the real 
biology network, so they are pursued by robot communities to 
imitate human behavior.  

 
Fig. 1 ESN schema (from reference [19]) 

A typical ESN has a K-dimensional external input u(t), 
N-dimensional reservoir activation state x(t) and 
L-dimensional output vector y(t). At least three connection 
weight matrices are necessary: input matrix Win, internal 
matrix W and output matrix Wout. The output feedback matrix 
Wfb is optional. The continuous-time version of an ESN is 
defined by  

� �� �yWWxuWxx fbinf1
����� a

c
� ,              (1) 

� 	� �uxWy ;g out� ,                                            (2) 
where c>0 is a time constant, a>0 is leaking rate, f is a 
sigmoid function and g is the output activation function. The 
input u includes both the sequence from users and a constant 
bias. When the modeling target is time series, only the bias is 
preserved. All the weights in matrices W* are randomly 
created in [0, 1]. The internal matrix W needs to be rescaled 
such that its largest eigenvalue is smaller than 1. During 
training process, only output matrix Wout is reset using 
standard linear regression algorithms.   

The equation (1) and (2) have discrete versions: 
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� � � � � �� 	� �nnn uxWy ;g out� ,                                              (4) 
where sin, sfb are the scalings of the input and output feedback, 
v is normalized noise vector with scaling sv playing an 
important role in stabilizing gradient descent optimization. � 
is a compound gain condensed by the time constant c and the 
stepsize � in Euler method. � and a together determine the 
effective spectral radius |�max| of the reservoir weight matrix. 
When ��a, |�max|<1 is guaranteed, and the ESN is stable. The 
typical spectral radius is tuned very close to 1, such that the 
ESN operates at the edge of chaos where it has greatest 
predictive power. sfb is set as 0 because nonzero out feedback 
may result in instability of ESNs. The dimension N of internal 
matrix determines the modeling capacity, and from the rule of 
thumb N should be about one tenth of the length of the 
training sequence.  

B. CPG model designing and training 
EMG is a zero-mean random stochastic process whose 

standard deviation is proportional to the active strength of 
motor units. The sEMG signals measured on the muscle 
surface provide insight into musculoskeletal systems such as 
joint angles and torque estimation, muscle fatigue evaluation. 
The processing methods of sEMG signals have been 
researched in time [21] and frequency [22] domains for a long 
time. In this study, only amplitude estimation was considered 
to acquire a smooth input for CPG models.  

A data processing approach with six sequential stages was 
used to estimate sEMG amplitude in terms of the reference 
[21]. The six stages are: (1) noise rejection/filtering; (2) 
whitening; (3) multiple-channel combination; (4) 
demodulation; (5) smoothing; and (6) relinearization. The 
estimating process was discussed in the next section. The 
shape of the sEMG amplitude recorded during an entire 
action of limbs looks like a bell. The peak of the bell shape is 
corresponding to the largest torque point. Taking the flexion 
and extension of forearms as examples, the largest amplitude 
of biceps muscles appears at about 90 degree of elbow flexion 
which is also the largest torque point. In words, the sEMG 
amplitude shape contains enough force information for 



  

driving CPG models.  
While sampling sEMG signals, the position, velocity or 

acceleration signals of joints were synchronously recorded as 
the observation of human motions. These signals would be 
used as the input and output of CPG model training. An 
intuitive structure for CPG models was design as Fig. 2. The 
sEMG amplitude estimation was inputted into the reservoir of 
an ESN, and the motions as teacher signals were imposed on 
the output of the reservoir. According to statistical leaning 
theory, the dimension of inputs should be not smaller than 
that of outputs. The human motion works in redundant 
pattern, and the number of muscles concerned with one 
specified action is often more than the DOFs of the action 
itself. The muscles must be selected beforehand to record 
sEMG signals in terms of the actions that need to be learned. 
For example, the flexion and extension of forearms depend 
on biceps and triceps muscles, so at least two channels of 
sEMG signals should be recorded to learn the flexion and 
extension motions.  

The training method of a CPG model follows the standard 
of ESNs. Both the input and the output need to be normalized 
to [0, 1] at first. The matrix Win and Wout are initialized and 
their dimension should be in accord with the dimension of 
inputs and outputs. The dimension of the matrix W lies on our 
expectation to the prediction capability of CPG model. Tens 
of dimensions of internal matrix W can satisfy the usual 
demand and an over bulky W increases computation burden 
more than prediction effect.  

 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2 A CPG model driven by sEMG signals 
The input and output signals are introduced into equation 

(3) point by point, and the echo state x(n) is updated step by 
step along with the iterative computation of equation (3). 
When the training process is over, the complex dynamics 
between the input and the output is captured as x(n). The 
deviation between the output in equation (4) and the real 
output signals is computed to estimate the weights of the 
matrix Wout. The weight estimation is very easy with 
wiener-hopf, recursive least square, ridge regression or sparse 
regression.  

Except the parameter choices, the ESN predictive effect 
also depends on the cycles contained in the training data. A 
cycle means an entire action, and the number of the cycles is 
the effective training length. When the cycles are given, more 

intensive samples have little meaning for training effect. In 
fact, the high sampling rate may import high-frequency noise 
being harmful to ESNs. ESNs prefer to low sampling rate as 
far as not too much loss of necessary information. In this 
study, the sampling frequency of sEMG signals is about 
1000Hz, but the amplitude estimation is down resampled to 
10Hz as the ESN input.   

The prototype in Fig. 2 can be considered as one 
implementation of CPGs, because ESNs have several 
properties similar to CPGs. ESNs can work like oscillators 
only with a constant bias input, and they operate at the edge of 
chaos, a border between the stable and unstable dynamic 
regime. The dynamic behavior of ESNs is far more complex 
than the traditional limit cycle model and its complexity is 
easily adjusted with a simple parameter, spectral radius |�max|. 
ESNs can output any high dimensional motion signals for 
different limbs as long as these limbs’ motions are learned 
beforehand. The behaviors of CPGs can be controlled by 
simple top-down signals from central nervous system, and the 
CPG model in Fig. 2 is also driven by sEMG signals.  

In order to become a model perfectly identical with CPGs, 
The training data for ESNs need to be carefully designed and 
prepared. Only by learning and capturing the dynamics 
contained in the training data, ESNs can imitate the behaviors 
similar to CPGs. Waegeman and et al [12] added a random 
sized padding of the last example value to train a discrete 
motion, and the output of the ESN learned the transients of 
the writing motions. Li and et al [11] introduced error 
feedbacks, such as shift, amplitude and frequency, to modify 
the states of neurons in the reservoir.  

In this study, the variable frequency was specially designed 
and introduced in training data to improve the adaptive ability 
of ESNs. As we know, CPGs can output motion pattern with 
different frequencies wanted by the human himself, and the 
frequency adaptation similar to CPGs is also expected in 
ESNs. The smooth frequency transient involved in inputs 
could help ESNs to obtain the frequency adaptation, but the 
input with a single frequency could not. An example will be 
shown in the next section to illustrate such adaptation. The 
dynamics hidden in the frequency transient is captured by 
ESNs, and the transient not experienced before is also 
understood and responded nicely. In this study ESNs were 
proved to have good generalization in frequency transient, 
which was very important to CPG models. 

III. EXPERIMENTS 

A.  Walking pattern training driven by sine signals  
A group of motion capture data No. 132 was downloaded 

from the database built by Carnegie Mellon University [11]. 
The videos were already transformed to bvh file, a type of 
open text format. The hierarchy skeletons and the motion data 
were loaded and parsed with our own C++ program. The data 
No. 132 includes 56 times of independent motion captures. 
One section of data No. 132-43, which was the walking with 



  

swing shoulders, was selected for our CPG model training. 
The data No. 132-43 includes about 3 entire gait cycles but it 
is far away from the training length needs for ESNs. One gait 
cycle was intercepted and artificially repeated for about 500 
times. The cycle selected includes 178 frames of samples, so 
a sine waveform u=sin(2�t/178) (t=1, 2, …) was designed as 
the input for CPG model. There are 31 joints in the data No. 
132-43 and each joint has x, y and z position coordinates. So 
the output data used for training are 93 dimensions and the 
inputs are 2 dimensions, a sine waveform and a constant bias.  

In order to study the frequency transient problem 
mentioned in section II, a slower-driving signal 
uslow=sin(2�t/(178×2)) was specially designed and alternately 
aligned with the standard input signal sin(2�t/178) together. 
Correspondingly, the output signals were resampled and 
aligned in terms of the same assignment. A 30-dimension 
internal matrix was assigned for the ESN and the spectrum 
radius was 0.98. The regular training process of ESNs was 
carried out and a trained CPG model was obtained waiting for 
test. A new signal utest=sin(2�t/(178×1.5)) was designed to 
test our CPG model. An input sequence was arranged as (u, u, 
utest, utest, u, u) to test the frequency adaptation. The output of 
the CPG model was shown in Fig. 3. Only the 1st and 16th 
dimension of the output were shown for simplicity’s sake, 
and they were the x coordinate of the joints named “Hips” and 
“LeftFoot”, respectively.  
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 The frequency transition being trained 

(The red solid line: input; the blue dash-dot line: the 1st dimensional 
output; the green dot line: the 16th dimensional output) 

From Fig. 3, a direct conclusion was drawn: the CPG 
model can realize the frequency transition and re-lock the 
phase when the frequency of input signals changed. This 
experiment illustrated that CPG models can learn and adapt 
the frequency transition by training. The transition between u 
and utest was not same as that of u and uslow, which proved the 
generalization ability of ESNs again. When an ESN learns a 
standard pattern and a slow pattern, any other pattern between 
them can be realized automatically.  

A faster signal ufast=sin(2�t/(178 0.5)) was designed and 
the new input sequence (uslow, uslow, u, u, ufast, ufast) were 
arranged to test the CPG model further more. The output was 
shown in Fig. 4. In Fig. 4, a little amplitude oscillation 
occurred at the transition point from uslow to u, and the similar 

phenomenon was in Fig. 3. Considering that the transition 
from uslow to u was already learned in training, it can be 
concluded that such amplitude oscillation rooted in the poor 
smoothness during transition. The signal uslow and u were 
connected rigidly without any smoothing, and a gradual and 
smooth transition may avoid the oscillation. The large 
amplitude oscillation at the transition from u to ufast can not be 
fully ascribed to the lack of smoothness. In our opinion, the 
main reason was the absence of the faster pattern from the 
training.  
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 4 The frequency transition not being trained 

(The red solid line: input; the blue dash-dot line: the 1st dimensional output; 
the green dot line: the 16th dimensional output) 

B. Flexion and extension pattern training driven by sEMG 
signals 

The flexion and extension of forearms were used to 
training our CPG model. A motion sensor MTx of MTS 
Systems Co. was laid on the wrist to record the position 
information. The acceleration and position were read out 
through a serial communication port. Only the position 
information was used in this study. The sampling rate 
predefined in the MTx was 100Hz. There were three types of 
position expression provided in MTx: Euler angle, rotation 
matrix and quaternion. The quaternion expression was 
selected because it could be averaged or interpolated. The 
first 100 samples were averaged as the initial position. 
Supposing the offset from the sensor MTx to the rotating 
center at the elbow was about 300mm, the x, y and z 
coordinates could be computed of any positions based the 
quaternion recorded.  

Two electrodes were pasted on the biceps and triceps 
muscles to acquire sEMG signals, respectively. The special 
instruments from Oisaka Electronic Equipment Ltd were 
linked with the electrodes to amplify the sEMG signal and 
remove the noise. An AD sampling board of Advantech Co. 
Ltd was used to sample the sEMG signals with 1000Hz. A 
notch filter was applied to remove the power line interference 
and a band pass filter with frequency 40~150Hz for removing 
the high and low frequency noise. The amplitude estimation 
was finished with the six stages mentioned in section II and 
the related computation items were described in the reference 
[21]. The amplitude estimation was smoothed with a Kalman 
filter to omit some unimportant details.  
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The position and sEMG data were synchronously sampled 
for about 150s, and 29 entire cycles were intercepted as 
teacher signals. These signals were repeated to obtain about 
1000 cycles. The teacher signals were resampled to 10Hz and 
then smoothed with a Kalman filter again. The sEMG 
amplitude estimation and a constant bias were combined as 
the input for the CPG model and the position coordinates as 
the output. The 95% data at the front was used for training 
and the remain for testing. The internal matrix of the ESN was 
set to be 30 dimensions and the spectrum radius was 0.98. A 
regular training was finished and the training errors were 
0.239, 0.496 and 0.391 on x, y and z coordinate. The test 
results were shown in Fig. 5 and the test errors were 0.235, 
0.494 and 0.385.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 The output of our CPG model driven by sEMG signals 

(The curve a, b and c are x, y and z coordinate, respectively. The red dot 
line:  the output expected; the blue solid line: the output predicted) 

The coordinates were transformed to the angles at sagittal 
plane and shown in Fig. 6, and the prediction error was 0.888. 
Comparing the joint angles expected, the output angles 
predicted had little different in the amplitude. It was 
troublesome that the there were some phase different which 
was hard to be detected in Fig. 5. In term of synchronization 
between human and robots, the phase difference was crucial 
and should be decreased as much as we can. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 The joint angles at sagittal plane 

(The red dot line: the output expected; the blue solid line: the output 
predicted) 

Observing the training and testing results, the errors on 
y-axis were found to be larger than the others. The x-, y- and 

z-axis in the experiment were vertical to the traverse, sagittal 
and frontal plane, respectively. The flexion and extension 
motion mainly lay in the sagittal plane, so the motion on 
y-axis was very weak. Moreover, the muscle activation at 
biceps and triceps was not significantly related to the motion 
on y-axis. In conclusion, the error on y-axis could be ignored 
during evaluating the CPG model. The error on z-axis was 
obviously lager than that on x-axis, which was caused by the 
backarm swing on z-axis. The backarm swing was 
determined by the muscle on shoulders and independent on 
biceps or triceps. The forearm extension may be a freely 
falling action because of gravity, and the sEMG at triceps was 
very weak. So the sEMG at triceps muscles had little help in 
recognizing the extension angle of forearms.  

The output data of our CPG model indicated the motion 
trajectory for robot control. An exoskeleton robot [23] was 
controlled with these outputs as shown in Fig. 7. The robot 
provided a rotation DOF in sagittal plane at the elbow joint. 
The output data were reduced into two dimensions with 
principal component analysis, and then were resolved as 
angles in sagittal plane. A maxon motor was controlled to 
following the angle sequence with a simple PID strategy. The 
output trajectory was recorded by an encoder in the motor and 
shown in Fig. 8.  The Fig. 8 demonstrated that the CPG model 
could be applied in robot control. The real curve in Fig. 7 did 
not closely follow the aim trajectory, and the main reason we 
thought that, was the PID parameter had not been adjusted 
perfectly. The angle sequence was about 10Hz, and a smooth 
interpolation must be helpful to better control effect.  

 
 

 
 
 
 
 
 
 
 
 

Fig. 7 An exoskeleton robot 
 

 
 
 
 
 
 

 
 
 

Fig 7 
 
 

Fig. 8 The motion trajectory of the robot 
(The red dot line: aim trajectory; the blue solid line: real trajectory) 
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IV. CONCLUSIONS 
This study aims at more intelligent robots not apart from 

human manipulation. The higher intelligence means to be the 
more powerful autonomous and poorer controllable. A new 
modulatable CPG model was presented in this paper for robot 
control. Our CPG model was oriented to balance the trade-off 
between the autonomous and controllable features.  

The CPG model was built based on an ESN, which could 
learn the human motion pattern from training data. The 
training data included sEMG signals and motion position 
sampled synchronously. SEMG signals were used as the 
input of ESNs and motion position as output. The trained 
ESN could output the motor commands like an oscillator, and 
these commands were under the control of human’s sEMG. 
The trained ESN could be embedded into robots as a CPG, 
and then the robots worked under human control. 

Our CPG model is different from the traditional 
oscillator models. It has more complex dynamics, can easily 
output high dimensional motion data, and it parameters is 
determined by supervised learning. Our CPG model is 
different from the motion intention recognition based on 
neural networks. There are not any processing like feature 
exaction and pattern classification during building the model. 
Of course, our model can be considered as temporal pattern 
recognition distinct from the common statistical pattern 
recognition. Our CPG model is different from a neuron- 
musculo-skeletal model. It focuses on capturing the dynamics 
in the mapping from sEMG to motion, not seeking the 
mapping function itself. So the CPG model can 
autonomously output novel motor commands according to 
the dynamics learned from training data, and the autonomous 
output is restricted by sEMG coming from humans.   

This paper has illustrated the CPG model can learn the 
frequency transition from training data, and an instance with 
sEMG driving is also realized and tested in exoskeletons. But 
there are many works waiting for being researched in the 
future.  

(1) The frequency modulation may result in the change 
of the output amplitude, but no reasonable interpretations 
could be provided.  

(2) A more smooth and quick estimation for sEMG 
amplitude is needed. The smooth input can avoid the noise to 
be introduced into the model output. A quick estimating 
method can help us in real time control.  

(3) When a robot is controlled with our CPG model, it is 
hard to respond to the perturbations of environments, because 
the CPG model has not accepted any feedback from 
environments. 

(4) The robot controlled by CPG models is not on 
passive status in human robot interaction. The robot’s 
dynamics is a new unstable factor in interaction systems.  
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