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Abstract —Rehabilitation robotics has received more and
more attention during the last decades, especially the exoskeleton
device for the upper limb rehabilitation, but most of them are
heavy and large. In our study, a light and wearable exoskeleton
device was proposed, which can be used in home rehabilitation
and it can also be used to implement passive and active training.
In this paper, we proposed to perform the active rehabilitation
based on the upper limb exoskeleton rehabilitation device
(ULERD) with variable stiffness elastic actuators, which
improves the safety for human-robot interaction and produces
adjustable stiffness capacity and resistance training to meet the
demand for safe active-passive elbow rehabilitation. It provides a
wide approach for human machine interface (HMI) in which the
device is non-backdrivable, and at the same time it is difficult to
obtain the contact force information directly. The proposed
method was verified by the experiments conducted under two
conditions with passive DoFs unlocked and with passive DoF's
locked during elbow flexion and extension performance. Each
experiment has three level resistances provided to the user. The
surface electromyography (sEMG) signals derived from biceps
and triceps were used to evaluate the efficacy of this method in
both experiments.

[. INTRODUCTION

Stroke has been regarded as a leading cause of disability
in the United States, which nearly 6.4 million Americans
suffer[1]. These stroke patients usually require a task-specific
therapy approach. In reality, budget constraints and therapist
shortages limit a hand-to-hand therapy approach throughout
the world, which overburden family and society [2]. The
development of robotics makes it feasible to utilize
rehabilitation robots to help stroke survivors to recover motor
function. Especially upper limb rehabilitation robots are
mainly differentiated into two types: exoskeleton and end-
effector. In the end-effector type, the user grasps the end-
effector (handle) of the robot to implement the rehabilitation,
like the MIT-MAUNS, it has two degrees of freedom (DOF)
for movement of performing task-oriented training, in which
upper limbs including wrist, elbow and shoulder were
involved[3], [4]. However, this kind of robots cannot target
movements with specific joints of limbs. So many researchers
focus on the exoskeleton strategy to solve this problem. One
of the typical devices MEDARM, developed by the Canadian
Institutes of Health Research (CIHR), used a cable driven
curved track mechamism which can provide independent
control [10]. ARMin [11] is also an exoskeleton device with
six independent DoFs and one coupled DoF, which can
effectively improve the motor function of the impaired arm for
stroke patients [12]. However, the existing rehabilitation
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robots are not suitable for home-rehabilitation since they are
so heavy and large. In our research, a novel light and portable
exoskeleton device was designed for home-rehabilitation.

Rehabilitation robots as human-machine interaction(HMTI)
devices need to perform different training strategies in clinic
to implement the rehabilitation tasks following evidence based
medicine. Given the researches in neuro-rehabilitation [13-
16], there are mainly three training strategies of physical
rehabilitation: passive rehabilitation, active rehabilitation and
bilateral rehabilitation [9], [17] and [18]. The robots for
rehabilitation mentioned above not only can implement one or
all kinds of these strategies, but also can adjust train level of
these strategies according to different impairments. That is,
the patients suffering weak stroke could perform passive
rehabilitation strategy reasonably and the mild stroke
survivors had better to get active rehabilitation, while those
who suffer hemiparesis tend to perform bilateral rehabilitation.
In our previous work, we focused on the implementation of
passive rehabilitation and bilateral rehabilitation with ULERD
and the active rehabilitation on elbow joint [19]. In this paper,
we proposed to implement the active rehabilitation suitable for
the ULERD. Given the difficulties to obtain the contact force
between the user and device using the force sensor, sEMG
signals are utilized to evaluate the performance.

Due to the different inputs and outputs, two fundamental
control methods were categorized to implement this
rehabilitation strategy [20]. One 1s mmpedance control, in
which motion input by the user i1s measured and force 1s fed
back to the user. The other is admittance control, in which
forces exerted by the user are measured and the device will
react with the proper displacement to the user. Impedance
control requires low inertia and friction and high
backdrivability, which can be adapted by commercial haptic
devices. However it lacks high forces, high mass and high
stiffness and it is difficult to work with complex end effectors
[20]. Meanwhile, admittance control devices have enough
freedom in the mechanical design, because backlash and tip
inertia can be eliminated. Admittance control can just be
applied where the contact force between human and device
can be accurately obtain. In our study, the ULERD is not
backdrivable due to the high ratio gearhead. And it also has
multi-DoFs to assist or resist motions of upper limb, so it is
difficulty to obtain the accurate contact force between human
and device by force sensors due to the difficulties to model the
resistance induced by the deformation of human skin and
muscle. Therefore, these two methods are not suitable for the
ULERD. In this paper, we proposed a novel method to detect



the motion of human upper limb with ULERD by offering
elastic elements between them, which can be regarded as an
elastic extension of human muscles. It is similar to the Serial
Elastic Actuator (SEA), which can provide a linear motion
detection using serial elastic springs [21]. In this paper, we
focused on the resistance generating to human forearm by
detecting its rotation motion. Two kinds of experiments were
designed to realize the stiffness adjustment of the elbow joint
by changed the state passive DoFs locked to the state passive
DoFs unlocked. In the experiments, sSEMG signals from biceps
and triceps muscles were used to do the evaluation of
methodology.

Subject's
forearm

Figure 1 Elbow extension and flexion in experiment

In the next section, we first introduce the ULERD. The
control methodology is presented in the Section III. Section IV
presents the conducted experiments of stiffness adjustment of
the elbow joint and the evaluation of methodology by
processing sEMG signals. Finally the paper ends with the
discussion and conclusions in Section V and Section VI
respectively.

II. OVERVIEW OF ULERD SYSTEM

According to neuro-rehabilitation theory, a rehabilitation
robot should achieve the task rehabilitating patients with
motor-function impairment with different training strategies.
In this paper, we focused on implementing resistance training
using the ULERD to generate resistance during elbow flexion
and extension as Figure 1 shows. The motion performed in the
sagittal plane involved biceps muscle, triceps and other
muscles, it is simpler to analyze this motion on the sagittal
plane with upper arm relaxed, because the main active muscle
is biceps muscle and triceps muscle. The range of motion
performed from status A (Figure 1) to status B is about 90
degree that was recorded by the inertia sensor mounted on the
wrist. The motion needs to be done three times in one
experiment.

A. System description

The system (ULERD) tried to implement active training
for upper-limb rehabilitation. A graphical user interface (GUI)
was used as the guide to show the predefined task on a
computer screen and it also can guide the user to complete the
tasks effectively. In the system, an inertia sensor was used to
record motion of the forearm and also to generate the different
impedance to the forearm. Besides, sEMG signals derived
from the relative muscles were utilized to evaluate the
efficiency of proposed method.
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B. ULERD design

The ULERD can provide passive and active training
strategies for patients with motor dysfunction especially
upper-limb motor function to recover the elbow and wrist
joints. To make it suitable for home rehabilitation, the device
was designed light and wearable. The up view of the basic
ULERD structure is shown in Figure 2. There are totally three
active DoFs consisting of elbow flexion/extension, forearm
pronation/supination, and wrist flexion/extension were
designed for the elbow and wrist. These three DoFs are all
actuated and sensorized. Besides, we also added four passive
DoFs, two in the elbow joint and two in the wrist joint [23], in
case that wvariation in the flexion/extension axis, and
correlation between the wrist and elbow joint during elbow
flexion and extension.

slotted hole 1

Frame for
upper arm

Figure3 A user wearing the ULERD

In our work, we used high-power density brushless DC
motor as the power supply and aluminium material to
construct the main frame of the device, in which way the
whole weight of the device is 1.3kg. Figure 3 shows a user
wearing the ULERD.

C. ULERD kinematics

These passive DoFs were designed to keep ULERD
compliant with human upper limbs during the motion. They
can also compensate for rotation error of human joints.
However, the gravity force on the forearm and wrist parts
cannot be completely compensated for, so the device had to be
supported by the human forearm to some degree during active
training. Given that patients doing active training are able to
adjust their upper limbs, passive DoFs are locked during
active training, which promoted the resistance stiffness and
improves the active rehabilitation effect. In this paper, several
contrasting experiments was conducted to show the effect of
active training with and without passive DoFs.



Figure 4 Schematic model of the ULERD elbow joint

Figure 4 shows the schematic model of the ULRED elbow
joint with passive DoFs. In this figure, we assume that the
upper arm is fixed on y-axis. O is the rotational centre of the
device, O, is the rotational centre of the user’s elbow joint,
and the forearm is fixed on AB. A rotational DoF at O, is
actuated, and two rotational and translational DoFs are the
passive DoFs, located at point A. CD is the centre disparity of
the elbow joint axis during elbow flexion and extension
motion on the sagittal plane. From this figure, we can get the
relationship between the human elbow joint and the device as
following (Eq. 1 and Eq. 2).

!

o =Lros (1)
Vo =¥5 v, 2)

where ¥/, is the angle between AO, and x-axis; ¥/, is

+/

40,

the angle between AQO, and x-axis, which can be obtained
through the inertia sensor; and ¥/ is the angle between AO,

and AQ, ; The detection method is presented below. Eq. 1 is
shown as a complex function in Eq. 3,

ZOIA exp(iy, ) + ZAOZ exXp(iy,) = x+ yi (3

And then get Eq. 4 and Eq. 5,
loicosy,+1,, cosy, =x (G
loasing, +1,, siny, =y &)

We agsume that the elbow joint axis is constant at any
moment, so the differential of Eq. 3 can be shown as Eq. 6,

ZO,A@i exp() + V5 10, eXp(i¥ ) + ZAOZ exp(iy,)=0 (6)
where VO1 aa0, is the velocity of AB along AO, and can

be got as shown below. Eq. 5 is multiplied by eXp{iy, ) .

ZOIAqu + VOIAAOQ + ZAOQ @, exp(iy, —iy,)=0 (1)
lolAml = lA02 @, cos(Y, — ;) (8)
Voan, = IAO2 @, sin(y, —y,) )

Then, the elbow joint position can be calculated by Eqs. 4
to 9.

III. CONTROL METHODOLOGY

According to the structure, the ULERD had no
backdrivability due to the high ratio gearhead, and also it was
difficult to obtain an accurate contact force since it covers
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human limbs closely. As was mentioned in ref. [24], in which
the exoskeleton device can force the motor to rotate over low
angles to follow human motion. However the transparency of
the system is low. In our study, elastic components were used
to detect human motion in a HMI system in which the device
has no backdrivability. Similar to a serial elastic actuator [25],
in which linear elastic springs were used to detect motion of
the load, this study used elastic materials to detect the relative
rotation of the user’s forecarm. By considering the proposed
methods, variable resistance using a spring model, damper
mode, or integration mode can be provided to the user’s upper
forearm. The experiments showed in part IV focused on the
elbow joint using the proposed method.

— Virtual environment #=———

Mation

—{ Inertia semsor |+ —{ Controler || The ULERD

PVA

Human

Metion

Encoder |

| Process SEMG signals Assessment
| Using Wavelet Packet Transform ™

Figure 5 Control scheme for the system

The scheme for control system is shown in Figure 5. An
inertia sensor was used to obtain human limb motion
information, including position, velocity, and acceleration.
These parameters were calculated depending on the virtual
motion and then were sent to motor contrellers as input which
were driven in position with a closed-loop velocity control and
an inertia sensor and encoders using a proportional—integral—
derivative (PID) control algorithm. Also sEMG signals from
the relative muscles during the elbow motion were used to
evaluate the effect of the proposed method.

Figure 7 Schematic model of resistance with passive DoFs unlocked

Figure 6 shows the schematic model of resistance with
passive DoFs locked, while Figure 7 states passive DoFs
unlocked in contrast. In the state passive DoFs unlocked,
spring and dampers models are used, the resistance effect of
dampers was generated by adjusting the elastic belts, though
no damper components were in it. By changing the state of the



passive DoFs, the stiffiness adjustment of the device is
realized during the elbow flexion and extension.

The elastic elements used in the device, as figure 8 shows.
These springs not only can change the stiffness of the system
but to help to obtain the force exerted on the forearm.

sprir

Guide shaft

Figure 8 Structure of the elastic element

A.  Control methodology
® Flexion motion
During flexion motion, the force exerted on the user’s
forearm can be obtained by spring S; and damper D, using Eq.
10,
F =k (0—-6)]+cb (10)
where k is the coefficient of spring S;; ¢; is the

coefficient of damper D;; & detected by an inertia sensor
represents the angle between the forearm and horizontal plane;
Then @ represents the angle of the forearm frame and

horizontal plane; & represents the velocity of forearm angle;
and £, is the virtual resistance to the user arm. Thus 7 —cd

represents the actual resistance to the user arm and /
represents the length between the elastic belt and the elbow
axis. Then the angle g canbe get from Eq. 10.

According to figure 7, the rotational angle of the elbow
joint can be obtained as the Eq.11.
a-B=6 (1)
Where ¢ represents the angle of the device elbow joint
and f represents the rotational angle of passive joint detected
by a potentiometer. The motor can be controlled by « as
Eq.12 shows,
F—cO
=p+6--
a=h kl

When the passive DoFs were locked, then the calculating
method would be changed. The force exerted on the forearm
with respect to spring S3 and damper D3 can be obtained by

Eq.13.

(12)

F3=k1(9+0{—%)l+c19 (13)

Where F, is the desired virtual force during the elbow
motion, finally the same as above, ¢zcan be obtained by the
Eq.13.

® Extension motion.

During extension motion, the force exerted on the user’s
forecarm can be calculated with respect to spring S, and
damper D,

Fz = kz (ﬂl _ﬂ)ll +029 (14)
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Where k, is the coefficient of spring S,, ¢, is the
coefficient of damper D», 3 represents the initial angle of the

passive rotated joint, and / represents the length between the

elastic belt and the passive joint axis.
The difference from the flexion motion, in extension
motion, forearm and the frame of the device are so closely that

Oequals 6 , then ¢ can be obtained as Eq.15 shows.

_hal 4 g (15)

- k2ll
Where F, —029 is the real resistance generated to the

limb and the target of control is finding the & using the closed-
loop position control method to meet the resistance.

When the passive DoFs were locked, the force analysis
during the motion changed as follows.

F4:k2(0+0{—%)l+c29 (16)
As the same as analysed above, & can also be obtained
from the Eq.16.

IV. EXPERIMENTS AND RESULTS

A.  Guide in a virtual environment

In the experiment conducted below, we constructed a
three-dimensional interface based on OpenGL, in which two
virtual upper limbs were created as figure 9 shows. One moves
at a programmable speed within the range of motion called
tracked arm, the other showed the motion of the user’s limb
called operated arm. The experiment worked like this. The
user was asked to manipulate the ULERD to make the
operated arm in the virtual environment follow the tracked
arm during elbow flexion and extension, in which the virtual
force was programmed. Then a certain resistance was
generated and exerted to the user limb.

Figure 9 The virtual environment of the experiment

B. sEMG signal acquisition and processing

This experiment also utilized sEMG signal to evaluate
the effect of the proposed method. SEMG is now widely used
to estimate muscle torque and to drive exoskeletal devices
since it can deeply reflect muscle activation [27]—[29].

During the elbow flexion and extension with forearm
relaxed, we just assumed only the biceps and triceps muscles
are activated in which way only two channels EMG signals
were used in the experiment. We did the signal acquisition
using 12-mm-diameter bipolar surface electrodes located 18



mm apart on the biceps and triceps muscles respectively. The
reference electrode was attached to where no muscles was
used as the ground signal. This work was done by a
commercial sEMG acquisition and filter device (Osaka
Electronic Device Ltd., Osaka, Japan) at a sampling rate of
1000 Hz through an AD sampling board (PCI3165; Interface
Co., Chiba, Japan). Before the data acquisition, the skin of
subject should be shaved and cleaned with an alcohol swab to
ensure good contact.

Then we implemented the data filtering using wavelet
transform packet (WTP) with Matlab software, since WTP
was commonly used to do feature extraction. We took
Daubechies 2 as the mother wavelet to do the decomposition,
and the detail coefficients at the fourth level were utilized to
describe the EMG signal according to refs. [30]-[32]. Then
they were integrated with 100 samples as the features.

Dry electrode

Personal-EMG END

Figure 10 Experimental setup for sSEMG signal acquisition

C. FExperiments and results

One healthy subject was invited in this experiment who
was asked to do the elbow flexion and extension motion using
ULERD. Two sets experiments were designed with passive
DoFs locked and with passive DoFs unlocked. In the state of
unlocked, the displacement of the forearm and the frame of the

ULERD were shown according to &and ¢— S, while in the
state of locked they were g_% and & . In each set of

experiment, we designed different parameters to generating
different resistance. For example, we can set & equals

o— p,or 9—%equals o to perform the elbow motion with

no resistance; We can also set a parameter K in the equation
k= 6—% —aor k=0—o+ f to represent to resistance

added to the limb, the higher values of & means higher
resistance added, so that k equals zero means no resistance
was added is also included in. The coefficients c,and c, of the
damper were set to 1.0 Ns/rad according to the tremble in
velocity.

Figure 11 show results of the experiments k equals zero.
They represent the angular record of the forearm and the
ULERD during the motion presented as blue and red curve
respectively. They seem to be all the same in both states (a)
and (b).

However in figure 12, which show processed EMG
signals from the triceps and biceps muscles presented as blue
and red curve respectively, we can get more information. The
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shape of the two figures is almost the same, they all describe
the elbow motion since EMG signals are deeply related to the
muscle activation. The values at about the fourth second are
higher in both figures, that’s because the forearm was moving
to the horizontal plane, and the biceps were activated. The
values of triceps shown as red curve in (a) was almost the
same as that in (b), indicating similar triceps activation in
these two performances, meanwhile, values from the biceps in
(a) was lower than that in (b), which was caused by some
gravity compensation by the forearm frame of the device with
the passive DoFs locked, proved to us that the stiffness of the
system was increased at the same time.

[ |
A W

Flexion

Extension

E>

@ (b)
Figure 11 Motion record with no resistance. (a) with passive DoFs locked
(b) with passive DoFs unlocked
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Figure 12 sEMG signals with no resistance. (a) with passive DoFs locked

(b) with passive DoFs unlocked

Then we tried to set the nonzero value of £ to find out the
effect variation of the system due to the increasing resistance
on the limb. Figure 13 shows the motion record of the forearm
and the device as discussed above

(@) ()
Figure 13 Motion record with nonzero resistance. (a) with passive DoFs
locked (b) with passive DoFs unlocked
In figure 13, resistance was provided to the user’s forearm
by setting the value of k to be nonzero one to present the
relative displacement between the user’s forearm and the
ULERD. In both (a) and (b), a bulge occurred in the motion
trajectory  because the displacement between the user’s
forearm and the ULERD changed, in which flexion motion
changed to extension motion. The misalignment provides us
the information that resistance had been generated on the limb.
By comparing with figure (a) and (b), we can also find out the
resistance provided in state with passive DoFs unlocked was
smoother than that provided in state with passive DoFs locked
because the misalignment could be corrected due to the elastic
elements.
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Figure 14 sSEMG signals with nonzero resistance. (a) with passive DoFs
locked(b) with passive DoFs unlocked

Figure 14 shows the processed sEMG signals from the

biceps muscle and triceps muscle as disscussed above. This
time nonzero resistance was added on the user’s limb,
The magnitude of the WPT coefficients of the SEMG signals
derived from the biceps in figure 14 was higher than that in
figure 12 , particularly during flexion motion. In contrast, the
magnitude of the WPT coefficients of the SEMG signals from
the triceps in figure 14 was higher than that in figure 12 during
extension motion, which indicates that the resistance is put
on the forearm during extension. This can show us the
variation of the muscle during the motion and the performance
of the generated resistance on the limb.

@
Figure 15 Mean WPT coefficients from processing the biceps and triceps
sEMG signals during the elbow motion with passive DoFs locked and
unlocked. (a) Biceps muscle in flexion (b) Triceps muscle in flexion(c) Biceps
muscle in extension (d) Triceps muscle in extension

®) © ()

Figure 15 shows the mean WPT coefficients from
processing the biceps and triceps sSEMG signals during the
elbow motion. (a) presents the biceps muscle in flexion
motion, (b) presents the triceps muscle in flexion motion, (c)
presents the biceps muscle in extension motion, (d) presents
the triceps muscle in extension motion. In each figure, red
color bar stands for the state with passive DoFs unlocked, the
other stands for the state DoFs locked, they showed us the
variation of the activities of the muscle by the increase of the
value k from zero to nonzero. From (a) and (b), we can get
that during the flexion motion, only the activity of the biceps
muscle soars by the increase of k ,activity of the triceps
muscle nearly keep the same. In the state of DoFs locked, the
increase seems sharply than that of DoFs unlocked, which
proved the evidence that the elastic elements could correct the
misalignment due to the variation of the device’s stiffness.

From (c¢) and (d), we can get that during the extension
motion, both the biceps muscle and triceps muscle are all
activated, since they all soar by the increase of k .They can
also prove the resistance provided in state with passive DoFs
unlocked was smoother than that provided in state with
passive DoFs locked. The different is, by the increase of k.,
the activity of triceps muscle increased sharply than that of
biceps muscle which nearly keep the same when & has a high
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value. So we can draw the conclusion that when the k is small,
the resistance was mainly added on the biceps muscle, while
when k is large enough, the resistance was mainly added on
the triceps muscle. This may help us to design effective
resistance training strategies for the upper-limb rehabilitation
using an exoskeleton device.

V. CONCLUSIONS

This paper proposed a method that detects the motion of
the human forearm instead of the device for an upper-limb
exoskeleton rehabilitation device for home rehabilitation
which was lack of backdrivability and accurate detection of
contact force between the human and the device. The structure
of the passive DoFs unlocked was designed to correct
misalignment between the human and the device to make it
more comfortable to the user; However, this may reduce
stiffness of the device that active training could not be
implemented completely according to the experimental
results, particularly with the high resistance required, but in
which way the resistance provided was smother than that
provided in state with passive DoFs locked. Contrast
experimental results indicated that the proposed method of
exerting different resistance implemented by changing the
value of k. During the elbow motion, the biceps muscle and
triceps muscle activated to different degree due to the
resistance generated on the limb, from mean WPT coefficients
from processing the biceps and triceps sSEMG signals shown in
figure 15, we could come up with more efficient method to
implement the resistance training for the exoskeleton
rehabilitation. This method was proved to be effective to
generate variable resistance for active training by using the
ULERD and will be further tested for home rehabilitation in
future work.
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