SEMG-based Posture Recognition of Elbow Flexion and Extension
Zhibin Song*1*2 and Zhenyu Wang*1 Shuxiang Guo*1,2,3

*1Beijing Institute of Technology, China
5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
*2Dept. of Intelligent Mechanical Systems Eng’g, Kagawa University, Japan
*3School of Electrical Engineering, TianJin University of Technology, TianJin, China
songbin02717@hotmail.com guo@eng.kagawa-u.ac.jp

Abstract – Surface electromyographic signal (sEMG) is used in some fields such as human machine interaction and measurement of human motor function, because it can reflect the activation of human muscle. Though the recognition of motion pattern of human limbs has been researched for many years, continuous recognition for human elbow motion without load is still difficult because of low signal noise ratio (SNR). In this paper, we proposed an improved weighted peaks method to process the filtered sEMG signals from the biceps muscle and adapted linear fitting method to obtain the elbow motion in sagittal plane. The experiments showed the proposed method can effectively process the sEMG signals and obtain the activation of biceps muscle. The experimental results show the similar data of elbow motion compared to the data derived from an inertia sensor.

Index Terms – SEMG; Recognition for motion pattern; Improved Weighted Peaks.

I. INTRODUCTION

Surface electromyographic signal (sEMG) has been applied in many fields such as human machine interaction, rehabilitation [1], measurement of human motor function [2] and prethesis control [3] and so on, because it can provide the information regarding the neural activation of muscles [4]. SEMG signal is a complex and non-stationary signal which is influenced by many factors such as physiological and anatomical properties and recoding tool. Most of research in this filed focus on the human motion pattern recognition such as the multi gestures in hand which is difficult to be assessed with physical sensors [5]-[8].

There are two main and important processes during the recognition: feature extraction and feature classification. In general, the method of feature extraction can be separated into three types: time domain, frequency domain and time-frequency domain according to analysis method [9]. The methods of time domain mainly include Integrated EMG (IEMG), Mean Absolute Value (MAV) and so on [9]. The methods of frequency domain mainly include Auto-Regressive coefficients (AR), frequency Median (FMD) and so on [10]. The methods of time-frequency domain were developed based on that in frequency domain and include Wavelet Transform (WT) and Wavelet Packet Transform (WPT) [11]. To the process of feature classification, the typical method is Artificial Neural Network (ANN) which is good at dealing with nonlinear problems. Besides it, there are Bayesian classifier (BC), Fuzzy Logic Classifier (FLC) and Support Vector Machines (SVM) [12]. In this paper, WPT is used to process the raw sEMG signals.

Early research on motion recognition is discrete which only including several gestures of human body [13]-[17]. Recently, some researches focus on the continuous recognition which means some relationship between sEMG and human motion should be indicated. Continuous recognition is basically constructed using hierarchical control recently. Most of commercial prosthetic hands implement the prosthetic-driven control using either amplitude or level coding of the EMG signal generated from an active muscle [18].

In this paper, we combined these two parts to implement the continuous recognition which is useful in human machine interaction and bilateral rehabilitation based on sEMG signal [19], [20]. It is different from other researches in motion pattern recognition that we focus on only one channel signal processing that means only one active muscle is recruited in our search. Some searchers proposed an EMG-driven state space model to estimate continuous joint angular displacement and velocity, demonstrated by elbow flexion/extension [21]. This research was done when the subject held some load in his hand and it increased the SNR. We did the experiment to recognize the elbow flexion and extension motion in sagittal plane when subjects wore no load and the motion was performed in a low speed in order to decrease the influence of the acceleration to activation of muscle.

Fig1. Elbow extension and flexion in experiment

There are two main parts in our research. One part is to process the sEMG signal to get the feature during the whole motion. We proposed a weighted peaks method in previous
research [22] and in this paper, we improved it to make the feature more effective. The second part is to map the feature vector to the motion in sagittal plane that is detected by using an inertia sensor. The first section introduces the research background about the sEMG signals; the second section shows the research methodology including the experimental approaches and experimental procedure. The third part shows the experimental results and last part shows the conclusions.

II. METHODOLOGY

Though the elbow flexion and extension performed in the sagittal plane involved biceps muscle, triceps and other muscles, it is simpler to analyze this motion on the sagittal plane with upper arm relaxed, because the main active muscle is biceps muscle. Therefore, it is easier to obtain the relationship between muscle activation and human body motion. The motion was performed from status A (Fig. 1) to status B and range of motion is about 90 degree. The motion is required to be done three times in one experiment.

A. SEMG signal acquisition and experiments

The sEMG signals were acquired by using the bipolar surface electrodes with 12mm in diameter, located 18mm apart, and the sampling rate is 1000Hz (Fig 2). The electrodes are reusable and they are adhered to biceps muscles and a reference electrode is adhered to body where no muscles exist as ground signal. The sampling data were pre-processed with a commercial sEMG acquisition and filter device (Oisaka Electronic Device Ltd. Japan.) with 8 channels. In order to have a good skin contact with the electrodes, the subject’s skin was shaved and cleaned with an alcohol swab. Fig. 3 shows the recorded raw sEMG signal from a subject’s biceps muscle. The window length of sEMG samples was set to 256 ms for the real-time requirement in engineering application.

Four subjects (healthy students in our lab) are invited to participate in this experiment. They are required to perform the elbow flexion and extension for ten times shown in Fig.1. The angle of forearm is detected via an inertia sensor. SEMG recorded is processed through Matlab software.

B. Wavelet Transform Packet (WPT)

Though the filter box is used to filter the noise in signals, it is inevitable to interlard some noise during sampling. Therefore, Wavelet Packet Transform (WPT) is used to process the original signal firstly. It generates a full wavelet basis decomposition tree. In each scale, not only the approximation signal as in DWT, but also the detail signals are filtered to obtain another two low and high frequency signals.

Given an EMG signal s(t), whose scaling space is assumed as U_0^0, wavelet packet transform can decompose U_0^0 into small subspaces in dichotomous way, which can be calculated according to (1).

$$U_{n+1}^j = U_j^2n \oplus U_j^{2n+1}, j \in \mathbb{Z}; n \in \mathbb{Z}_+$$ \(1\)

where j is the resolution level and \oplus stands for orthogonal decomposition. U_{n+1}^j, U_{2n}^j and U_{2n+1}^j are three close spaces corresponding to $u_n(t)$, $u_{2n}(t)$ and $u_{2n+1}(t)$. $u_n(t)$ satisfies the following (2) [20].

$$\begin{align*}
 u_{2n}(t) &= \sqrt{2} \sum_{k \in \mathbb{Z}} h(k) u_n(2t - k) \\
 u_{2n+1}(t) &= \sqrt{2} \sum_{k \in \mathbb{Z}} g(k) u_n(2t - k)
\end{align*}$$ \(2\)

where the function $u_n(t)$ can be identified with the scaling function ϕ and $u_1(t)$ with the mother wavelet ψ. $h(k)$ and $g(k)$ are the coefficients of the low-pass and the high-pass filters respectively. The sub-signal at U_{n+1}^j, the nth subspace on the jth level, can be reconstructed by (3).

$$s_j^n(t) = \sum_k D_{j,k}^{n} \psi_{j,k}(t), k \in \mathbb{Z}$$ \(3\)

where $\psi_{j,k}(t)$ is the wavelet function, $D_{j,k}^{n}$ was the wavelet packet coefficients at U_{j+1}^n, which can be calculated by (4).

$$D_{j,k}^{n} = \int_{-\infty}^{\infty} s(t) \psi_{j,k}(t) \, dt$$ \(4\)
In this research, we chose Daubechies 2 and decomposition raw sEMG signal to the forth level. The reconstructed wavelet signals obtained by (4) are analyzed. The figure 4 shows the reconstructed sEMG signal processed by WPT in node 4.0. WPT generates a high-dimension feature vector. Some researches proposed lots of methods to reduce the dimension to save the calculation cost such as principle component analysis (PCA) and a self-organizing feature map (SOFM) [23]. In this paper, the most effective feature vectors are selected rather than all of vectors, namely the node 4.0, because the effective component of sEMG signals distribute in low frequency domain.

C. Weighted peaks method

The reconstructed sEMG signals processed by WPT have the different frequency in different nodes; therefore, the amount of peaks obtained in different nodes is different. First, zero crossing is used to find where the peak exists.

- Zero crossing (ZC)

\[
ZC = \sum_{n=1}^{N} \left[\text{sgn}(s_n \times s_{n+1}) \cdot \left| s_n - s_{n+1} \right| > \text{threshold} \right]
\]

(7)

where \(\text{sgn}(x) = \begin{cases} 1, & \text{if } x < 0 \\ 0, & \text{otherwise} \end{cases} \)

All the reconstructed sEMG signals of zero crossing are saved to obtain peaks and valleys among them.

- Trend acquisition with weighted peaks

If \(\max(s_{z(i)}; s_{z(i+1)}) + \min(s_{z(i)}; s_{z(i+1)}) > 0 \)

\[
P(i) = \max(s_{z(i)}; s_{z(i+1)})
\]

else if \(\max(s_{z(i)}; s_{z(i+1)}) + \min(s_{z(i)}; s_{z(i+1)}) < 0 \)

\[
P(i) = (-1) \times \min(s_{z(i)}; s_{z(i+1)})
\]

(9)

where \(s_{z(i)} \) is the reconstructed sEMG signal of zero crossing; \(P(i) \) is the peaks or valleys between the data of zero crossing and valleys is transformed into positive number.

According to the signals in Fig.5, it is not difficult to find that, the higher peaks reflect the trend of motion more than the lower peaks, therefore, the method of weighted peaks is proposed to increase the component of higher peak and decrease the component of lower peak to obtain the feature near to the motion of subject’s forearm. In (10), the parameter of weighted peaks is set as 3 according to many times experiments. The figure 6 shows the results of weighted peaks using the values of figure 5.

\[
P(i + 1) = \frac{1}{n} \frac{P(i) + P(i + 1)}{n}
\]

(10)

Where \(n = \begin{cases} 3, & P(i + 1) < P(i) \\ 1, & P(i + 1) = P(i) \\ 1/3, & P(i + 1) > P(i) \end{cases} \)

D. linear map from the sEMG to motion

In this experiment, the subject was required to perform the elbow flexion and extension with his upper arm relaxed in the sagittal plane in a low and constant speed. The activation of biceps muscle is considered to be proportional to the motion of subject’s forearm. Therefore, we adapted a simple proportional fitting line to map the weighted peaks of sEMG signals to the motion.

\[
M(i) = aP(i) + b
\]

(11)

The least square method was used to obtain the parameter a and b. Based on ten times experiments, average of a is 710 and value of b is -43.

III. EXPERIMENTS AND RESULTS

In this paper, four subjects were required to perform the elbow flexion and extension in sagittal plane with their upper arms relaxed. One experiment consists of three times elbow
flexion and extension. Each subject was required to perform ten times experiments. After once experiment, the subject was allowed to rest for one minute. The rational angle of forearm is about 90 degree in the sagittal plane from posture that forearm is vertical to the ground to the posture that forearm is parallel to horizontal plane. In figure 7 the vertical axis stands for the angle of forearm and it is easy to understand subject A performed elbow flexion and extension three times during the status A and status B (shown in Fig.1). The blue curve means the rational angle of forearm detected by using the inertia sensor. The red curve stands for the rational angle obtained by using the proposed method. Because the subjects perform the elbow flexion and extension from 0 degree to 90 degree, we did the simple processing that limits the minimum values of predicted results.

Fig.8 shows typical experimental results from subject B. Subject B obtained better prediction for continuous posture of elbow flexion and extension in the first time. The other two times performance did not obtain good prediction due to the unstable sEMG signals. It is also indicated that it is difficult to predict the continuous posture for upper limb with weak sEMG signals.

Table I shows the average errors between detected angles and predicted angles for four subjects for ten times experiments, which indicated that the proposed method can predict the elbow flexion and extension in the sagittal plane at a certain degree. Subject A got the best prediction efficacy among all of subjects.

Table I Average errors between detected motion and predicted motion

<table>
<thead>
<tr>
<th>Subject</th>
<th>Average errors(deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.4(±1.4)</td>
</tr>
<tr>
<td>B</td>
<td>9.1(±2.1)</td>
</tr>
<tr>
<td>C</td>
<td>8.2(±1.9)</td>
</tr>
<tr>
<td>D</td>
<td>9.4(±2.6)</td>
</tr>
</tbody>
</table>

IV. CONCLUSIONS

In this paper, we focused on the relationship between surface EMG from the biceps muscle to the motion of elbow flexion and extension on sagittal plane. This work can recognize the continuous posture of forearm on sagittal plane with subject’s upper arm relaxed. WPT was used to process the raw sEMG signals for its good filter efficacy. The proposed weighted peaks method was used to obtain the signals where the higher amplitude signals got higher weight and lower amplitude signals got lower weight, so that the obtained signals reflect the activation of muscle smoothly. Last, linear equation was used to map the processed sEMG to human motion. Four subjects participated in experiments and the results show the proposed method can obtain the effective mapping relationship between sEMG and the flexion and extension on sagittal plane. Some higher errors for prediction existed, which indicated it was difficult to predict the continuous posture of forearm on sagittal plane accurately because the weak sEMG signals are unstable. In the future, we will focus on the rehabilitation application based on this work.

REFERENCES

