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Abstract 

Most exoskeleton devices for upper-limb rehabilitation are heavy and bulky. The present study develops a light 

and wearable exoskeleton device for passive and resistance training that can potentially be used in home rehabilitation. 

A method for implementing resistance rehabilitation based on the proposed upper-limb exoskeleton rehabilitation 

device is proposed. The method is able to be used commonly in the field of Human-machine force interaction where the 

machine is of high friction, non-backdrivibility which causes the difficulty to obtain contact force. To verify the 

efficacy of the method, experiments were conducted under two conditions, namely with passive degrees of freedom 

unlocked and locked, during elbow flexion and extension. In each case, three levels of resistance were generated and 

provided to the user. The processed EMG signals can be used to verify that the method is effective in both of cases. 

 

Keywords: Resistance training, Surface electromyography (sEMG), Upper-limb exoskeleton rehabilitation device 
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1. Introduction 

Stroke is a leading cause of disability in the United States, 

affecting an estimated 6.4 million Americans [1]. Traditional 

rehabilitative therapies help regain motor function and 

ameliorate impairment [2], but they depend on the therapist’s 

experience and require many therapists, which is cost- 

prohibitive. Some rehabilitation robots have been developed to 

help stroke survivors recover motor function [3-6]. Robots used 

for upper-limb rehabilitation can be divided into exoskeleton 

and end-effector types [7,8]. However, most existing 

rehabilitation robots are heavy and large and thus unsuitable for 

home rehabilitation. In this study, a light and wearable 

exoskeleton device is designed and developed for home 

rehabilitation. 

Upper-limb rehabilitation robots are typical human- 

machine interaction (HMI) devices. However, they are different 

from other HMI devices because they should be able to execute 

training strategies in clinic regardless that they are end effector 

type or exoskeleton type according to evidence-based 

medicine. According to the statement in some literature 
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[9-12], physical rehabilitation training strategies can be mainly 

classified as passive, resistance [13], and bilateral rehabilitation 

[14,15]. Rehabilitation robots also adjust the training level of a 

given strategy according to individual impairments. Patients 

can generally perform passive rehabilitation reasonably well 

following a weak stroke, and survivors of a mild stroke get 

good benefits from resistance rehabilitation. Hemi-paralyzed 

patients tend to perform bilateral rehabilitation. Our previous 

study discussed the implementation of passive rehabilitation 

and bilateral rehabilitation using an upper-limb exoskeleton 

rehabilitation device (ULERD) and some preliminary research 

has been performed for resistance rehabilitation focusing on the 

elbow joint [16]. The present study proposes an implementation 

method for resistance rehabilitation suitable for a ULERD. 

Since obtaining the contact force between the user and the 

device is difficult using a sensor while a portable exoskeleton 

device is being worn, surface electromyography (sEMG) 

signals were acquired and analyzed to evaluate the resistance 

rehabilitation performed by unimpaired subjects. 

Two fundamental control methods are categorized 

according to inputs and outputs of system to implement 

resistance rehabilitation strategy using an electromechanical 

system [17]. One is impedance control, in which the motion 

input by the user is measured and the force is fed back to the 

user. The other is admittance control, in which forces exerted 

by a user are measured and the device reacts with proper 
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displacement. The paradigm for impedance control is motion in 

and force out; the paradigm for admittance control is force in 

and motion out. Both methods were developed to implement 

the same goal, which was to provide virtual resistance to 

humans using an electromechanical device; however, they 

adapt different approaches because of their different application 

condition. 

Impedance control, used commonly in commercial haptic 

devices (e.g. Phantom Omni), requires a low-inertia, low- 

friction, and highly backdrivable device. However, Its 

performance is lacking in the region of higher forces, high 

mass, and high stiffness, and adding complex end effectors is 

difficult [17,18]. In contrast, admittance control devices allow 

considerable freedom in the mechanical design of the device 

because backlash and tip inertia can be eliminated. Admittance 

control can be adopted when the contact force between the 

human and the device can be detected accurately. A ULERD 

adopts a high-ratio gearhead, so it is not backdrivable. It has 

multiple degrees of freedom (DoFs) to assist or resist multiple 

motions of the upper limbs with mounts on the upper limbs, so 

an accurate contact force between the human and the device 

cannot be obtained easily using force sensors. Therefore, these 

two methods are not suitable for ULERDs. Different from 

tactility or resistance exerted on the human by the deformation 

of a haptic device via impedance control, deformation of 

human skin and muscle induces resistance on the human body, 

which is difficult to model. Therefore, in this study, a method is 

proposed to detect the motion of human upper limbs related to 

the ULERD by creating an elastic contact condition between 

them, which can be considered an elastic extension of human 

muscles. A similar method is adopted in serial elastic actuators, 

which provide linear motion detection using serial elastic 

springs [19]. The present study focuses on generating resistance 

to the human forearm during elbow flexion and extension by 

detecting rotating motion of the forearm. Experiments were 

carried out with three healthy subjects to demonstrate the 

features of the proposed system. Testing with actual patients in 

a medical center is being planned. The experiments included 

two main cases: generating three levels of resistance with 

passive DoFs locked and unlocked, respectively, in the elbow 

joint. The experimental efficacy was evaluated by detecting and 

processing sEMG signals from the biceps and triceps muscles, 

which indicate whether the subjects perform the motion against 

the resistance derived from the device. This project was 

approved by the institutional review board of Kagawa 

University, Japan. 

2. Overview of ULERD development 

2.1 Theory of human limb physical rehabilitation 

The design and development of a rehabilitation robot 

should include training strategies based on neurorehabilitation 

theory to achieve the rehabilitation of patients with motor- 

function impairment. Passive, resistance, and bilateral training 

are three strategies for physical rehabilitation of the upper 

limbs [14,15,20]. Some combinations of these strategies have 

also been used [14,15]. 

Passive training is performed by patients who have no 

muscle strength. It assists them to perform some tasks with a 

therapist or a rehabilitation device. It is usually suitable for 

patients with severe impairments and very limited motor 

function. Resistance training is performed by patients who have 

some muscle strength with a therapist or a rehabilitation device. 

It is usually suitable for weak patients with limited motor 

function. Bilateral training requires the patient to perform 

symmetrical or coordinative motion with bilateral limbs, which 

has been demonstrated to be effective [21]. It is usually 

performed by hemiplegic patients and commonly requires a 

rehabilitation device. The present study focuses on 

implementing resistance training using a ULERD to generate 

resistance during elbow flexion and extension. 

2.2 System description 

The proposed system for upper-limb resistance training 

includes a human machine interface HMI and a robot 

manipulator (ULERD). The predefined task is shown on a 

computer screen using a graphical user interface (GUI). The 

developed GUI guides a user to effectively perform the tasks. 

An inertia sensor mounted on the user’s wrist is used to detect 

motion of the forearm, and the values derived from the inertia 

sensor are used to generate the different impedance combined 

with different models. sEMG signals from the biceps and 

triceps muscles were used to evaluate the proposed method. 

2.3 ULERD design 

The motivation for the ULERD design was to provide 

passive and resistance training for patients with motor 

dysfunction to recover upper-limb motor function especially in 

the elbow and wrist joints. The goal was to make the device 

wearable and portable for home rehabilitation. The basic design 

structure of the ULERD is depicted in Fig. 1. Three active 

DoFs were designed for the elbow and wrist, namely elbow 

flexion/extension (F/E), forearm pronation/supination (P/S), 

and wrist flexion/extension (F/E). These three DoFs are both 

actuated and sensorized. Four passive DoFs were added, 

consisting of two DoFs (one for rotation and the other for 

translation) in the elbow joint and the other two (one for 

rotation and the other for translation) in the wrist joint after 

considering many factors, such as variation in the flexion/  

 

Figure 1. Top view of ULERD. The device includes three DC motors 

that provide elbow flexion/extension, wrist pronation/ 

supination, and wrist flexion/extension, respectively. 
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extension axis [22], individual variation in the physical 

dimensions of the joint, and correlation between the wrist and 

elbow joint during elbow flexion and extension. The two 

passive rotational DoFs were sensorized with potentiometers, 

and can be turned on or off depending on requirements. 

To reduce the mass of the device, high-power-density 

brushless DC motors are used and the main frame of the device 

is aluminum. The total weight of its body is 1.3 kg. Table 1 

shows the continuous maximum torque and workspace of each 

joint. The upper limb was fixed to the device using several 

elastic belts passing through slotted holes on the upper arm and 

forearm of the ULERD. The palm can also be fixed to the wrist 

part of the ULERD using an elastic belt. The ULERD was 

designed to allow users to put it on conveniently by themselves. 

The distance between the elbow joint and the wrist part and the 

angle between the upper arm and forearm part of the ULERD 

can be moderately adjusted to fit the user. Figure 2 shows a 

user wearing the ULERD. 

Table 1. Specifications for each joint. 

 
Continuous maximum 

torque (Nm) 

Device joint workspace 

(deg) 

Elbow F/E 15 180/0 
Forearm P/S 9 85/75 

Wrist F/E 7 70/65 

 

 

Figure 2. User wearing ULERD on his upper limb. 

2.4 Kinematics of ULERD elbow joint 

In this paper, the implementation of resistance training 

using the ULERD focused on the elbow joint, whose 

kinematics are discussed below. The passive DoFs in the elbow 

joint (one translation and one rotation) were designed to make 

the device compliant with the user’s elbow flexion and 

extension. These DOFs can be locked via two bolts. Passive 

DoFsalso compensates for faulty rotation of human joints. 

However, this is not ideal for some patients. For example, the 

gravity force on the forearm and wrist parts of the ULERD 

cannot be compensated for completely, so the device must be 

supported by the human forearm to some degree during 

resistance training. Considering that patients who actively train 

have a certain ability to move their upper limbs, the passive 

DoFs are locked during resistance training, which enhances the 

resistance efficacy and improves the resistance rehabilitation 

effect. Experiments were conducted to show the effect of 

resistance training with and without passive DoFs. The typical 

integration structure of passive and active DoFs in the elbow 

joint is analyzed in detail in the following section. 

Figure 3 shows a schematic model of the ULRED elbow 

joint with passive DoFs. In this figure, a rotational DoF located 

at 1O  is actuated, and two passive DoFs (rotational and 

translational) are located at point A. It is supposed that the 

upper arm is fixed in the y axis. 1O  is the rotational center of 

the active DoFs, 2O  is the rotational center of the user’s elbow 

joint, and the forearm is fixed on component AB. In this figure, 

a crank and rocker mechanism is formed where point 1O  does 

not overlap 2O . CD is the center disparity of the elbow joint 

axis on the sagittal plane during elbow flexion and extension. 

From Fig. 3, the basic relationships between the device and the 

human elbow joint are obtained as: 

2121
=+ OOAOAO lll                                     (2) 

321                                         (3) 

where 1ψ  is the angle from 1
AO  to the x axis; 2ψ  is the 

angle from 2
AO  to the x axis, which can be obtained from the 

inertia sensor; and 3ψ  is the angle from 2
AO  to 1

AO  (its 

detection method is presented below). Equation 2 can be 

rewritten as a complex function as: 

yixilil AOAO  )exp()exp( 21 21
                      (4)

 

Then: 

xll AOAO  21 coscos
21

                             (5) 

yψlψl AOAO =sin+sin 21 21
                              (6) 

It is supposed that at any moment, the elbow joint axis is 

constant, so the differential of Eq. (4) is: 

0=)exp(+)exp(+)exp( 22111 2211
ψiωlψiVψiiωl AOAAOOAO        (7) 

where 
21AAOOV  is the velocity of AB along 1

AO  and can be 

obtained as shown below. Equation (6) is multiplied 

by )exp( 1ψi . 

0=)-exp(++ 1221 2211
ψiψiωlViωl AOAAOOAO                (8) 

)-cos(= 1221 21
ψψωlωl AOAO                           (9) 

)-sin(= 122221
ψψωlV AOAAOO                           (10) 

The position of the elbow joint axis can be calculated using Eqs. 

(5-10). 

 

Figure 3. Schematic structure of ULERD elbow joint.
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3. Control methodology 

According to the literature [17,18], two main control 

methods are widely used in HMI systems to generate a force 

interaction, namely impedance and admittance control. The 

main difference between them is the application condition. 

Impedance control requires high backdrivablity and low inertia 

and mass. An impedance control device should allow free 

movement in response to the operator’s motion commands, 

such that no resistance to motion occurs when the user 

manipulates the device in free space. Furthermore, low inertia 

and friction improve device transparency. A typical application 

is the Phantom family (Sensable Technologies, Woburn, MA, 

USA). Alternatively, admittance control can be used in a high- 

inertia system but requires a highly accurate contact force 

between the human and machine. The machine is controlled 

based on the virtual environment model. 

These methods have the same objective of implementing a 

compliant interaction between the human and machine but 

adapt different approaches. In the ULERD, the high-ratio 

gearhead results in no backdrivability, but it covers human 

limbs closely, which results in difficulties obtaining an accurate 

contact force. A similar circumstance has been previously 

reported [23], in which the exoskeleton device can follow 

human motion by forcing the motor to rotate over low angles, 

which are detected by hall sensors. Human motion can be 

tracked but the transparency of the system is low. In this study, 

elastic components were used to detect human motion in the 

HMI system in which the device has no backdrivability. Similar 

components were proposed and used in a serial elastic actuator 

[24], in which linear elastic springs were used to detect the 

motion of the load. In this study, elastic materials were used to 

detect the relative rotation of the user’s forearm with respect to 

the upper arm. Based on the proposed methods, variable 

resistance can be provided to the user’s upper forearm, such as 

a spring model, damper model, or integration model, and even 

water resistance. Experiments conducted using the proposed 

method focused on the elbow joint. 

The control system scheme is shown in Fig. 4. Human 

limb motion information, namely position, velocity, and 

acceleration, was obtained from an inertia sensor. These 

parameters were calculated based on the motion of the virtual 

model and then sent to the motor controllers as input. Because 

the proposed method mainly uses the relative displacement 

between the human limb and the device, the motors were 

driven into position with closed-loop velocity control and an 

inertia sensor and encoders using a proportional-integral- 

derivative (PID) control algorithm. To evaluate the 

performance of the proposed method, sEMG signals from the 

biceps and triceps muscles were recorded during elbow flexion 

and extension. 

Figure 5 shows a schematic model of resistance with 

passive DoFs unlocked, with spring and damper models used. 

Although no damper components were used in this system, the 

resistance effect of dampers was obtained by adjusting the 

elastic components. 

 

Figure 4. Control scheme for proposed system. Control strategy can be 

obtained in terms of the values for inertia sensor and the 

desired model. sEMG signals are used to assess the efficacy 

of proposed system. 

 

Figure 5. Schematic model of elbow resistance with passive DoFs 

unlocked. 

3.1 Control methodology with passive DoFs unlocked 

(1)Flexion motion 

During flexion motion, the force exerted on the user’s 

forearm can be calculated with respect to spring 1s  and 

damper 1D  using Eq. (11). Because the motor is driven using 

closed-loop velocity and position control, the output torque is 

adjusted automatically. 

 
1111 )( clkF                             (11) 

where 1k  is the coefficient of spring 1s ; 1c  is the 

coefficient of damper 1D , which can be adjusted to match the 

virtual environments; θ is the angle between the user’s 

forearm and the horizontal plane, which is detected via an 

inertia sensor; 1θ  is the angle between the forearm frame and 

the horizontal plane; θ  is the angle velocity of the user’s 

forearm; and 1F  is the virtual resistance to the user when the 

user moves his or her arm. Because the damper effect is 

generated by adjusting elastic components, θcF -1  is the 

actual resistance to the user and l  is the length from the elastic 

component to the elbow axis. 

The angle between the forearm frame and the horizontal 

plane is obtained as: 

lk

Fc

1
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
                               (12)

 

According to the elbow joint mechanism of the device (Fig. 5), 

the rotational angle of the elbow joint is obtained as: 

1                                         (13) 

where α  is the angle of the elbow joint of the device and β  

is the angle of the passive rotational joint that can be detected 

by a potentiometer. The motor can be controlled based on the 

following equation derived from Eqs. (12) and (13): 
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Because the relative displacement of the user’s forearm 

with respect to the frame of the device is the main factor (see 

Eq. (12)), traditional PID control was adapted based on 

closed-loop displacement. 

(2) Extension motion 

The force analysis during flexion motion is not the same 

or the reverse of that during extension motion due to the 

passive DoFs. During extension motion, the force exerted on 

the user’s forearm can be calculated with respect to spring 

2s and damper 2D  using: 

 
21122 )( clkF                             (15) 

where 1β  is the initial angle of the passive rotated joint, 1l  is 

the length from the elastic component to the axis of the passive 

joint, 2c  is the coefficient of damper 2D , and 2k  is the 

coefficient of spring 2s . 

During extension motion, the user’s forearm makes 

contact with the frame of the device, so the following equation 

can be obtained: 

1                                             (16) 

From Eqs. (13), (15), and (16), the following equation is 

obtained: 

1

12
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


 




lk

cF 
                          (17)

 

where 1- θcF   is the real resistance on the user’s limb. The 

target of the control is to find the θ  (or 1α ) value that meets 

the resistance by using the closed-loop position control. 

Because 1β  is detected by a potentiometer that is not actuated, 

1- βα  is discussed as one variation in the following section. 

3.2 Control methodology with passive DoFs locked 

(1) Flexion motion 

With considering the influence of passive DoFs on system 

stiffness, the passive DoFs can be locked conveniently when 

there is requirement of high system stiffness (Fig. 6). The force 

exerted on the user’s forearm with respect to spring S3 and 

damper D3 is: 

 

 

Figure 6. Schematic model of elbow resistance with passive DoFs 

locked. 
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where 3F  is the desired virtual force during flexion motion 

with passive DoFs locked. The rotational angle of the elbow 

joint of the device can be obtained by rearranging Eq. (18): 
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                          (19)
 

(2) Extension motion 

The force analysis during flexion motion is similar to that 

during extension motion: 




 
224 )

2
( clkF                           (20)

 

where 4F  is the virtual force during extension motion with 

passive DoFs locked. The rotational angle of the device elbow 

joint is obtained by rearranging Eq. (20): 


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4. Experiments 

4.1 User interface based on virtual reality 

A three-dimensional interface was created using OpenGL. 

Two virtual upper limbs were created in the virtual 

environment (Fig. 7). One was a tracked virtual arm that moves 

at a programmable speed within the range of motion of the 

user’s limb, and the other was a manipulated virtual arm that 

showed the motion of the user’s limb. The experiment required 

the user to manipulate the ULERD to make the manipulated 

virtual arm follow the tracked virtual arm from a fully extended 

position to extension. During this experiment, the virtual force 

was programmed and a certain resistance was exerted on the 

user. 

 

Figure 7. Virtual environment used for experiment. 

4.2 sEMG signal acquisition and processing 

sEMG, which is related to muscle activation, is widely 

used to estimate muscle torque and to drive exoskeletal devices 

or limb prostheses [25-31]. In this study, sEMG was adopted to 

detect the activation of muscles to evaluate the performance of 

the user’s limbs during experiments. Because distinguishing 

muscle activation using raw sEMG signals is difficult, the 

sEMG data were processed. 
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sEMG signals from the biceps and triceps muscles were 

acquired to assess elbow flexion and extension. These signals 

were recorded using 12-mm-diameter bipolar surface 

electrodes located 18 mm apart at a sampling rate of 1000 Hz. 

Sampled data were preprocessed with a commercial sEMG 

acquisition and filtering device (bandwidth: 20-500 Hz) with 

eight channels fed to the processing program at a sampling rate 

of 1000 Hz (most EMG signal frequency power is contained 

within 20-150 Hz) through an analog-to-digital (AD) sampling 

board (PCI3165, Interface Co., Chiba, Japan). 

Hardware and software filters were used to remove noise 

generated by the machine. A hardware filter was implemented 

via a filter box to eliminate electrical interference noise. The 

software filter was implemented using wavelet packet 

transform (WPT) via Matlab (Natick, MA, USA) because WPT 

has advantages compared to other filter methods and can also 

be used as a feature extraction tool. Daubechies 2 was selected 

as the mother wavelet, and the detail coefficients at the fourth 

decomposition level from refs. [32-34] were used to exact 

sEMG signal features.  A statistical method was used instead 

of wavelet entropy. The integrated absolute value (IAV) of 

WPT coefficients was obtained as: 

∑
1=

=

N

n

nsIAV
                                    (22) 

where ns  is the coefficients of WPT for sEMG signals. N was 

set to 256. 

5. Results and discussion 

5.1 Experimental results 

Three healthy subjects in our lab participated in the 

experiments, which require them to perform elbow flexion and 

extension wearing the ULERD. Each subject was required to 

perform the experiments at three levels of resistance with 

passive DoFs locked (C1) and unlocked (C2), respectively. In 

C1, the displacement of the user’s forearm and the ULERD are 

represented in terms of 2/- πθ  and α . In C2, the 

displacement of the user’s forearm and the forearm frame of the 

ULERD were are represented in terms of θ  and 1- βα . Each 

case included three levels of resistance, namely elbow flexion 

and extension with no resistance ( 0=-
2

- α
π

θ  or 0=+- 1βαθ ), 

low resistance ( 0.3=-
2

- α
π

θ  or 0.3=+- 1βαθ ), and high 

resistance ( 0.6=-
2

- α
π

θ  or 0.6=+- 1βαθ ), respectively. For 

each level of resistance, two sEMG signal channels from the 

elbow joint (e.g., biceps and triceps) of the subjects were 

monitored and used as performance indicators. Because of the 

instability of the velocity obtained via calculation, the damper 

coefficients 1c  and 2c  were set to 1.0 Ns/rad. Every subject 

performs five trials for each level. 

Figure 8 shows typical results of the experiments of C1-L1 

(first level with passive DoFs locked) and C2-L1 (first level 

with passive DoFs unlocked) from subject A. In this figure, (a1) 

is the motion of the user’s forearm and the ULERD during 

C1-L1 and (b1) is the IAV of the WPT coefficients (Eq. (22)) of 

the sEMG signals derived from the triceps and biceps muscles. 

The values at about the fourth second are higher because the 

forearm was moving to the horizontal plane, and the biceps 

were activated. In Fig. 8, (a2) shows the motion trajectories of 

the user’s forearm and the ULERD in experiment C2-L1, and 

(b2) shows the IAV of the WPT coefficients for the sEMG 

signals derived from the triceps and biceps. The values of 

triceps in (b1) are almost the same as those in (b2), indicating 

similar triceps activation; however, values from the biceps in 

(b1) are lower than those in (b2), which was caused by 

incomplete gravity compensation by the forearm frame of the 

ULERD in C2. 

 
(a1) 

 
(a2) 

 
(b1) 

 
(b2) 

Figure 8. Typical results of experiments of C1-L1 (first level with 

passive DoFs locked) and C2-L1 (first level with passive 

DoFs unlocked) from subject A. (a1) and (b1) are the results 

for passive DoFs locked; (a2) and (b2) are the results for 

passive DoFs unlocked.
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Figure 9 shows typical results of C1-L2 and C2-L2 

experiments done by subject A. In this figure, low resistance 

was provided to the user’s forearm by setting the relative 

displacement between the user’s forearm and the ULERD 

( 0.3=-2/- απθ  for C1-L2 and 0.3=+- 1βαθ  for C2-L2). 

In Figs. 9(a1) and (a2), there is a bulge in the motion trajectory 

of the ULERD because the displacement between the user’s 

forearm and the ULERD changed, with flexion motion 

changing to extension motion. In (b1), a peak appears at the 

fourth second, which was perhaps induced by misalignment 

between the user’s forearm and the ULERD. The values  

 
(a1) 

 
(a2) 

 
(b1) 

 
(b2) 

Figure 9. Typical results of experiments of C1-L2 (second level with 

passive DoFs locked) and C2-L2 (second level with passive 

DoFs unlocked) from subject A. (a1) and (b1) are the results 

for passive DoFs locked; (a2) and (b2) are the results for 

passive DoFs unlocked. 

derived from the biceps in (b1) are higher than those in (b2), 

particularly during flexion motion. In contrast, values from the 

triceps in (b1) are higher than those in (b2) during extension 

motion, indicating that the resistance exerted during C1 was 

higher than that during C2, because the structure with passive 

DoFs locked is stiffer than that with passive DoFs unlocked. 

However, the resistance provided in C2 was smoother than that 

provided in C1 because the misalignment was corrected. 

Figure 10 shows typical results of C1-L3 and C2-L3 

experiments of subject A. In this figure, high resistance was 

provided to the user’s forearm by setting the relative  

 
(a1) 

 
(a2) 

 
(b1) 

 
(b2) 

Figure 10. Typical results of experiments of C1-L3 (third level with 

passive DoFs locked) and C2-L3 (third level with passive 

DoFs unlocked) from subject A. (a1) and (b1) are the results 

for passive DoFs locked; (a2) and (b2) are the results for 

passive DoFs unlocked. 
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displacement between the user’s forearm and the ULERD 

( 0.6=-2/- απθ  in C1-L3 and 0.6=+- 1βαθ  in C2-L3). 

Similar to the previous figures, the values from the biceps 

during flexion increased and then decreased during extension 

motion in (b1) and (b2). However, the results from the triceps 

are opposite to those from the biceps. According to (b1) and 

(b2). The values from the biceps and triceps in (b1) are higher 

than those in (b2), which indicates that the stiffness of structure 

with passive DoFs locked is higher than that of the structure 

with passive DoFs unlocked. 

Table 2 shows the mean values of IAV (Eq.22) obtained by 

processing the biceps and triceps sEMG signals in the three C1 

and C2 experiments for subjects A, B, and C. Because the 

activation of the biceps and triceps muscles is different during 

elbow flexion and extension, the mean values of IAV for 

flexion and extension were calculated separately. The value of 

the biceps during flexion during C1-L1 is lower than that 

during C2-L1 because the gravity of the ULERD forearm frame 

was not completely compensated. The biceps flexion value 

during C1-L2 is higher than that during C1-L1, indicating that 

the low resistance provided to the user was effective. The 

biceps flexion value during C1-L3 is higher than that during 

C1-L2, indicating that the high resistance provided to the user 

was effective. The biceps value during C1-L3 is higher than 

that during C2-L3, which indicates the stiffness of the structure 

with passive DoFs locked was higher than that with passive 

DoFs unlocked. Similar results were obtained during extension. 

The activation of the triceps is higher in L3 than in L1 and L2. 

The passive DoFs decreased the activation of the triceps muscle 

during extension in L2 and L3. 

Table 2. Mean IAV values of sEMG signals for C1 and C2 experiments 

for three subjects ( × 10-3) (F: flexion; E: extension; B: biceps; 

T: triceps). 

           

Subject 
 

Experiment 

A B C 

C1 C2 C1 C2 C1 C2 

L1 
F 

B 5.83 7.31 4.48 6.14 7.28 9.16 

T 1.12 1.25 0.91 1.18 1.24 1.46 

E 
B 4.07 4.15 3.44 3.19 4.99 5.35 
T 1.02 1.31 1.15 0.99 1.31 1.67 

L2 

F 
B 10.4 10.7 8.79 9.07 11.9 10.2 

T 0.97 1.30 0.87 1.13 1.26 1.49 

E 
B 9.33 9.51 6.94 6.61 10.8 11.5 

T 1.81 1.59 1.77 1.71 2.29 2.41 

L3 

F 
B 15.8 12.7 14.1 13.3 21.1 18.8 
T 1.24 1.19 0.89 1.22 1.45 1.57 

E 
B 11.2 9.86 7.54 8.11 12.9 12.3 
t 2.57 1.91 2.71 2.23 3.17 2.80 

5.2 Discussion 

Different from other rehabilitation robots, the ULERD is 

designed to be portable and wearable, and it can be supported by 

the user. It induces a complex contact condition between the 

robot and the user, so that the contact force is not able to be 

detected accurately using force sensors. To implement resistance 

training, based on traditional impedance and admittance control, 

user motion is detected rather than device motion. Elastic 

components are used to create the physical elastic relationship 

between the user and the device. The desired impedance applied 

to the subject can be generated by combining the motion the 

subject and the elastic models. 

In the proposed device, passive DoFs, which can be locked 

or unlocked, were designed to correct the misalignment between 

the device and the human body. Two sets of experiments were 

conducted to evaluate the proposed method during resistance 

training, namely one set with passive DoFs unlocked and one set 

with passive DoFs locked. Passive DoFs make it more 

comfortable for users to perform passive training motion 

wearing the ULERD; however, they reduced the stiffness of the 

entire mechanical structure, so the effect of resistance training 

was not as good as that with passive DoFs locked. 

SEMG signals describing muscle activity were used to 

evaluate the proposed method and to generate resistance to the 

human forearm using the ULERD. The relationship between the 

torques exerted from muscles and sEMG signals was not 

discussed because many studies have reported on it. The effects 

of the proposed method implemented during elbow flexion and 

extension were obtained by processing the sEMG signals 

derived from the biceps and triceps muscles. The accuracy of 

the proposed method depends on the device structure. 

6. Conclusion 

An upper-limb exoskeleton rehabilitation device was 

proposed and developed for home rehabilitation. Due to the lack 

of backdrivability and accurate detection of the contact force 

between the human and the device, a method that detects the 

motion of the human forearm instead of the device was 

proposed and implemented with passive DoFs locked and 

unlocked, respectively. The structure of the passive DoFs was 

designed to correct misalignment between the human and the 

device to allow more user comfort; however, it reduced the 

device stiffness so that resistance training could not be 

implemented completely according to the experimental results, 

particularly with high resistance. Experimental results indicate 

that the proposed method of exerting resistance can be 

implemented with passive DoFs locked and unlocked, 

respectively, with the latter showing higher stiffness and higher 

resistance. The proposed method is effective for use with the 

ULERD and will be further tested for home rehabilitation in 

future work. 
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