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Abstract – As a critical important function for autonomous 

mobile robots, visual tracking is a challenge work in the field of 
computer vision, for the reason that factors like illumination 
variance, partial occlusions and target appearance changes shall 
be carefully considered. Focus on applications of our amphibious 
spherical robots, an adaptive visual tracking algorithm was pro-
posed on the basis of compressive tracking. A feature selection 
method was designed to choose random Haar-like feature tem-
plates in various scales by calculating Fisher’s criterion functions 
of features. On this basis, a random feature pool, which tried to 
preserve discriminative features at different frames, were con-
structed and then maintained on-line to provide candidate ap-
pearance model of the target. Moreover, an adaptive update 
mechanism was adopted for selectively updating feature tem-
plates and classifier parameters of the improved compressive 
tracking algorithm, which alleviated the drift problem. Experi-
mental results with various image sequences demonstrated the 
effectiveness and robustness of the proposed tracking algorithm, 
which can meet practical application requirements of the am-
phibious spherical robots. 
 

Index Terms –Compressive Tracking. Adaptive Update. Haar-
like Feature. Random Feature Pool. Amphibious Spherical Robot. 
 

I.  INTRODUCTION 

As a critical important function of autonomous mobile ro-
bots, visual tracking has become a hot research field of com-
puter vision. Benefiting from the development of image detec-
tion and pattern recognition, great progresses in visual track-
ing have been made in recent years. And some state-of-the-art 
tracking algorithms, including TLD (Tracking-Learning-
Detection) [1], MIL (Multiple Instance Learning) [2], STUCK 
(Structured output tracking with kernels) [3] and L1APG (L1 
tracker using Accelerated Proximal Gradient) [4], have been 
proposed. Generally, most existing tracking algorithms can be 
loosely categorized as generative and discriminative algo-
rithms according to the appearance modeling method to be 
used [5]. Generative algorithms represent the target with ap-
pearance features and then try to search the best matching re-
gion inside the image. Discriminative algorithms regard the 
tracking process as a binary classification problem and try to 
separate the target from background with pattern recognition 
methods like SVM (Support Vector Machine) and ANN (Arti-

ficial Neural Network). From our point of view, discriminative 
algorithms have a greater application potential, for the reason 
that a large number of samples are used for training the binary 
classifier to be used for tracking, which may lead to better 
robustness and higher precision. 

Compared with theoretical studies conducted on personal 
computers or workstations, designing practical visual tracking 
algorithms for small-scale mobile robots is a more challenge 
work. On the one hand, because the camera platform may 
move over time, factors like illumination variance, partial oc-
clusions and target appearance changes shall be taken into 
account. On the other hand, the image processing ability of 
small-scale mobile robots is usually much weaker than work-
stations, thus real-time performance of the algorithm shall be 
specially considered. 

Focus on the vision application issue of our amphibious 
spherical robots, an improved visual tracking algorithm was 
proposed on the basis of compressive tracking (CT) algorithm. 
A feature selection method was designed to choose random 
Haar-like feature templates in various scales by calculating 
Fisher’s criterion functions of features, which enhanced ro-
bustness of the appearance model. On this basis, a random 
feature pool, which tried to preserve discriminative features at 
different frames, were constructed and then maintained on-line 
to provide candidate appearance model of the target. Moreo-
ver, an adaptive update mechanism was adopted for selective-
ly updating feature templates and classifiers parameters of the 
improved compressive tracking algorithm, which alleviated 
the drift problem. Finally, evaluation experiments with various 
image sequences were conducted to verify the effectiveness 
and robustness of the proposed tracking algorithm, which 
demonstrated that it can meet application requirements of am-
phibious spherical robots. 

The rest of this paper is organized as follows. An over-
view on our amphibious spherical robots and CT algorithm 
will be introduced in Section II. Details of the random Haar-
like feature selection method will be elaborated in Section III. 
The adaptive update mechanism of the random feature tem-
plates and the improved algorithm will be described in Section 
IV. Experimental results will be provided in Section V. And 
Section VI will be conclusions and follow-up relevant re-
search work. 



II.  RELATED WORK AND APPLICATION REQUIREMENT 

A. Amphibious Spherical Robot 

 
    (a) Land mode                          (b) Underwater Mode 

Fig. 1 Diagram of the improved amphibious spherical robot 

As Introduced in reference [6], an amphibious spherical 
robot for delicate tasks in littoral regions was proposed by our 
team in 2012. As shown in Fig. 1, the robot consisted of a wa-
terproof hemispheric upper hull, in which electronic devices 
and scientific instruments were installed, and two openable 
quarter-sphere lower shells [7]-[9]. In the land mode, the robot 
walked with four legs. And in the underwater mode, it swam 
with water jets. Different from most existing mobile robots or 
autonomous underwater vehicles, the robot was able to work 
in complex environments like coral reefs and pipelines. 

 
Fig. 2 Diagram of the electronic system of the amphibious spherical robot 

The robot has limited load space which was less than 250 
mm in diameter. So a high-speed computer or workstation, 
which consumers considerable power and generates a great 
deal of heat, is not suitable for this small-scale mobile robot. 
Consequently, as shown in Fig. 2, a core-board carrying a low-
power Xilinx Zynq-7000 SoC (XC7Z020) was adopted to fab-
ricate the electronic system of the improved version of the 
spherical robot in 2014 [10]. And functional devices and sen-
sors like gyroscopes and cameras were integrated on a periph-
eral board controlled by the core-board. On this basis, robotic 
visual algorithms including Gaussian background model-based 
detection and CT were implemented on the embedded system 
in 2015. And a SoC-based heterogeneous computing architec-
ture was designed to speed up image processing. 

Considering the potential application scenarios and lim-
ited processing abilities, designing the tracking system of the 
amphibious spherical robot was a challenging task. First, be-

cause the robot may work under diverse land and underwater 
conditions, robustness to disturbing factors like partial occlu-
sions was essential to the adopted tracking algorithm [11]-
[13]. Second, the adopted tracking algorithm shall be carefully 
designed and optimized to fit the embedded processing system 
of the robot [14]-[15]. Third, precision and effectiveness of the 
adopted tracking algorithm should be acceptable to meet re-
quirements of robotic applications [16]-[17]. 

B. Compressive Tracking Algorithm 
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(a) Tracking at the (n + 1)-th frame 
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(b) Updating classifier after Tracking at the (n + 1)-th frame 

Fig. 3 Diagram of the CT algorithm. 

In 2012, Zhang et al. proposed the CT algorithm, which 
provided a feasible framework for developing tracking algo-
rithm of small-scale mobile robots [18]. Figure 3 shows major 
principles of the CT algorithm. As a concise discriminative 
algorithm, CT consists of two stages: tracking and updating. 
In the tracking stage, candidate image patches of the target of 
the (n + 1)-th frame are sampled around In, which is the track-
ing result at the n-th frame. Then, low-dimensional features 
are extracted from the high-dimensional integral vectors of 
these samples using a static measurement matrix, which is in 
accord with the theory of compressive sensing. The process of 
compression or dimension reduction can be denoted as 
v = Mu , where nu R  indicates the integral vectors, lv R  

indicates the feature vectors with dimensions l n . M is a 
sparse random matrix, the entries of which were defined as: 
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where s=2 or 3. Then, the low-dimensional feature vectors are 
input into an online learning Naïve Bayes classifier. The sam-
ple with maximal classifier response is set to the target for 
determining In+1. In the updating stage, training samples of the 
target and the background are sampled according to the track-
ing result at the (n + 1)-th frame (In+1), and the compressed 
feature vectors of the training samples are used to update the 
parameters of the Naïve Bayes classifier, which will be used in 
the tracking stage of the (n + 2)-th frame. 

The CT algorithm makes a balance between robustness 
and real-time performance, thus it has a bright future in low-
power real-time visual applications. Xu et al. [19] designed an 
improved CT-based surveillance system for object tracking. 
Wang et al. [20] designed a CT-based person detection and 



tracking system for a mobile robot by fusing data from radio 
frequency identification (RFID). And a CT-based prototype 
tracking system for our amphibious spherical robot was design 
using Microsoft Kinect in 2015 [21]. However, the drift and 
anti-occlusion problems limited its practical applications in 
robotics. And some improved CT algorithms have been pro-
posed trying to solve these problems using the Markov Chain 
Monte Carlo (MCMC) sampling mechanism [22], particle 
filters [23], kernel functions [24], etc.  

III.  HAAR-LIKE FEATURE SELECTION METHOD 

A. Analysis on Feature Model of Compressive Tracking 
From our point of view, the major contribution of the CT 

algorithm is the random Haar-like feature model inspired by 
the theory of compressive sensing. Haar-like features were 
originally used for face detection by calculating intensity dif-
ferences between adjacent rectangle regions [25]. Because all 
candidate Haar-like feature templates in an image patch con-
stitute an over-complete feature set for visual representation, 
selection methods like LDA (Linear Discriminant Analysis) 
[26] and Adaboost [27] were adopted to get feature templates 
with stronger separability. 


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Fig. 4 Random Haar-like feature selection method of CT 

As shown in Fig. 4, different from conventional solutions, 
a random selection method was adopted in the CT algorithm 
to randomly choose Haar-like feature templates using the stat-
ic sparse matrix depicted in equation (1). And the random se-
lection methods lead to a light computational consumption, 
which was critical important for real-time visual tracking. Ide-
ally, feature values of negative image patches are while noises, 
while feature values of positive image patches obey a single 
Gaussian model. However, the separability of this random 
appearance model may be not so good and may significantly 
degrade with time for the reason that it has no practical physi-
cal meaning.  

Figure 5 shows four samples of random feature templates 
selected by a CT tracker. Blocks marked in red represented 
random feature templates with positive coefficients, and 
blocks marked in blue represented random feature templates 
with negative coefficients. The 2# feature template covers flat 
regions of the target, thus it measures environmental noise 
rather than meaningful appearance information like edges, 
corners and textures. Blocks of the 3# feature template and 4# 
feature template are either too large or too small, so they are 
easily polluted by noises. Only blocks of the 1# feature tem-
plate has a relatively suitable size and location, which results 
in a much more discriminative feature value than its counter-
parts. 

 
(a) Haar-like feature templates selected by the CT algorithm 

 
(b) Value distribution of Haar-like features selected by the CT algorithm 

Fig. 5 Random Haar-like features selected by the CT algorithm 

B. Haar-like Feature Selection Method 
Although the random Haar-like feature model adopted in 

the CT algorithm is effective in some measure, its robustness 
can be enhanced by adding some constraints and update 
mechanisms. First of all, the separability of the appearance 
model and the precision of the tracker can be improved by 
selecting more discriminative feature templates. Moreover, 
because the CT algorithm adopted a set of static random fea-
ture templates, the cluster background may gradually pollute 
the target model. Thus a feature pool should be constructed 
and maintained to update the feature templates to be used on-
line.  

Considering the physical meaning of Haar-like feature, a 
coarse-to-fine feature selection method was designed to 
choose random Haar-like features. And a feature pool consist-
ed l sub-pools, each of which contained N candidate feature 
templates would be set up. The feature selection method con-
sisted of two stages. 

In the coarse stage, three constraints were added into the 
random generation process of Haar-like feature templates for a 
higher probability of capturing meaningful features like edge 
and corner. These constraints were as follows.  

(1) The size of each feature template was constrained by 

 min min max

min min max
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where width×height is the size of the target image patch, w×h 
is the size of the generated feature template, and αmin, αmax, 
widthmin and heightmin are coefficients set previously. As men-
tioned in Section II Part A, a feature template only captures 
information of raw pixels when its size is too small, and it has 
weaker spatial discriminative ability when its size is too large. 
Thus a medium size was adopted in this study. 

(2) The shape of each feature template was constrained by 

min m axs s
w

h
       (3) 

where smin and smax are coefficients set previously. As we all 
know, the shape of targets and textures have a relatively low 
possibility to be very slice and long.  

(3) The size of the j-th feature template in the i-th sub-
pools was constrained by  
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where wup,i (hup,i) and wlow,i (hlow,i) are the upper and lower 
bound values of the width (height) of the generated feature 
template. And the value of wup,i, wlow,i, hup,i and hlow,i were cal-
culated by using some common-used scale parameters in im-
age processing [1]. This constrain was set to ensure that fea-
ture templates in the feature pool may capture appearance fea-
tures in various scale. From our point of view, a diversified 
feature template set, which combines global and local features, 
will be more robust and effective. 

In the fine stage, l×N discriminative feature templates 
will be finally selected to construct the feature pool to be used. 
The Fisher's criterion function was adopted to measure the 
discriminative ability of a feature template. 
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where fi,j is the j-th feature template of i-th sub-pools. �+(fi,j), 
�−(fi,j), σ+(fi,j), σ−(fi,j) are respectively the means and standard 
variances of feature values of positive and negative samples 

using the feature template fi,j. And 1  and 2 are coefficients 

set previously. If the value of J(fi,j) was relatively low, the 
feature template fi,j would be discarded and regenerated. The 
fine stage tried to maximize the distance between classes and 
to minimize the interclass variance. And it was hopeful to get 
a more clear classification result using the selected feature 
templates. 

The computational load of the coarse stage was light be-
cause most operations could be completed by setting parame-
ters of the random number generator. And the fine stage could 
be speed up by using the integral image. Thus the proposed 
method would not affect seriously the real-time performance. 

As shown in Figure 6, by introducing the proposed 
coarse-to-fine feature selection method, the separability of the 
random feature templates were obviously improved. More or 
less, the selected templates have already been given some im-
age meaning. And the shapes of the selected feature templates 
were more reasonable. As a result, the feature value distribu-
tion of positive samples was more concentrated than its coun-
terpart in Fig. 5, which was beneficial for classification during 
tracking. 

(a) Haar-like feature templates selected by the proposed method 

(b) Value distribution of Haar-like features selected by the proposed method 
Fig. 6 Random Haar-like features selected by the proposed method 

IV.  ADAPTIVE COMPRESSIVE TRACKING ALGORITHM 

A. Adaptive Compressive Tracking Algorithm 
Except for the static appearance model, another factor 

causing the drift problem of CT is the static learning mecha-
nism. Assuming all single feature values in v={v1, v2, …, vl} 
are independently distributed, the tracker classified candidate 
image using l Naïve Bayes classifiers as 
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Then parameters of these classifiers are incremental updated  
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where λ is a static learning parameter. Because the CT algo-
rithm updated the appearance model at a constant rate, drift or 
tracking failure would occur in some adverse scenarios. On 
the one hand, information of cluster background will gradually 
pollute the target model because the tracker accepted updating 
information without any identification. On the other hand, if 
occlusion occurred, the tracker will learn appearance features 
of the occluding object rather than the target, which may lead 
to tracking failure. 

Commonly, semi-supervise learning and adaptive update 
mechanism are feasible tools to solve the drift problem of on-
line learning tracking algorithms. And an adaptive update 



mechanism was designed for the proposed algorithm in this 
paper. Figure 6 shows the major principles of the proposed 
adaptive tracking algorithm. The proposed algorithm can be 
divided into three processes: 

 
(a) Establishing feature pool and appearance model 

 

(b) Feature pool adaptive updating 

Fig. 7 Diagram of the proposed adaptive compressive tracking algorithm 

(1) As shown in Fig. 7 (a), a feature pool was constructed 
at the first frame after randomly selecting l×N discriminative 
features. The feature pool consisted of l feature sub-pools, 
each of which contained N candidate feature templates meet-
ing constraints elaborated in Section III Part B. After that, 
candidate feature templates were sorted according to their sep-
arability using the training samples and the Fisher's criterion 
function. And the best one in each sub-pools were adopted to 
construct the random measurement matrix or the appearance 
model to be used for tracking. 

(2) At the n-th frame, candidate image patches with max-
imum classifier response would be chosen as the target, which 
was as same as Fig. 3. 

(3) After locating the target at the n-th frame, positive and 
negative training samples were sampled around In to evaluated 
candidate feature templates in the feature pool. If a feature 
template being used deteriorated, it would be replaced with the 
best one in the corresponding sub-pool. If most feature tem-
plate being used deteriorated and the maximum classifier re-
sponse is very low, occlusions or target appearance changes 
might have occurred. The tracker would reserve previous clas-
sifier parameters and try to predict the position of the target 
using a constant acceleration motion model. And the motion 
model was built on the basis of Kalman Filtering, which can 
be described as  
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B. Feature Update Mechanism 
Details of the adaptive feature update mechanism are as 

shown in Algorithm 1. The features to be updated included the 
feature templates being used and candidate feature templates 

in the feature pool. As to the feature templates being used (��i), 

the relative error at recent frames (���), which was calculated 
with response values of Naïve Bayes classifier, cumulated 

over time. And ��� was used to evaluate the effectiveness of ��i. 
If ��i kept output fuzzy or error classification results, it would 
be replaced with the candidate feature template with best dis-
criminative ability in the corresponding sub-pool. As to the 
candidate feature templates in the feature pool (fi,j), the one 
with maximum accumulated errors would be regenerated with 
the probability ��������/∆. That provided an additional oppor-
tunity for some features performed not so well up to now but 
may be discriminative in some specific circumstances. And 
this design tried to avoid trapping in local optimum and may 
be robust to appearance changes of the target. 

Algorithm 1 Adaptive feature update mechanism 

Input: positive and negative samples for training <v, y>, y∈{-1,+1} 

Input/Output: feature templates to be used for tracking ��i, i∈[1,l] 

                          random feature pools fi,j, i∈[1,l], j∈[1,N] 
 
Initialize coefficients including αmin, αmax, widthmin heightmin, smin, smax, etc. 
Update Naïve Bayes classifier parameters of all candidate features 
for i=1, 2, …, l do//for all feature sub-pools and weak classifiers to be used 

for j=1, 2, …, N do//for all candidate features in a feature sub-pools 
//check the feature template using response of  Naïve Bayes classifiers 

    if ���� ≤hi,j(v) ≤ ��� then 

        ��,�
��� = ��,�

��� + �� 

    else 
        ��,�

���� = ��,�
���� + �� 

    end if 
    ��,� = ��,�

���/(��,�
���� + ��,�

���) 

end for 
if ℎ� i(v) < ythresh and ��� > �������� then 

    ��� = arg max�(��,�) (��,�) 

end if 
������ = arg max��,�

���,�� 

if ������ > �������� then 
    regenerate ������ of i-th feature sub-pool with the probability ��������/∆ 
end if 

end for 

The updating rate of candidate feature templates in the 
feature pool was constrained restrict (only 0.05 in this study) 
for a relatively stable appearance model. As far as we know, 
the principle of the random Haar-like feature model adopted in 
CT was similar with random forest in some measure. Thus an 
unstable appearance model may decrease the stability of the 
tracker. 

In addition, the computational load of the update mecha-
nism was increased for the reason that Naïve Bayes classifiers 
to be maintained on-line increased N times. However, the can-
didate feature templates were data independent. So the calcu-
lation process can be accelerated using parallel computing 
technologies. Meanwhile, l could be set to a smaller value than 
the original CT algorithm because the selected feature tem-
plates were more robust and discriminative. That would also 
lighten some computational load. 



V.  EXPERIMENTAL RESULTS 

The goal of this paper is to design an efficient and effec-
tive improved CT algorithm for our amphibious spherical ro-
bots. To verify the validation of the proposed algorithm, ex-
periments were conducted with various image sequences on 
two parts: 

(1) To evaluate the effectiveness of the feature selection 
method elaborated in Section III and the adaptive tracking 
algorithm elaborated in Section IV, six standard benchmark 
image sequences were used to conduct the off-line evaluation 
experiments on MATLAB R2013a. And the tracking results 
were compared with that of CT and MIL which is also a Haar-
like feature-based tracking algorithm. 

(2) To evaluate the work performance of the proposed al-
gorithm on our amphibious spherical robots, two image se-
quences captured from the view of our robots were adopted to 
conduct the robotic evaluation experiments. 

A. Experiments with Benchmark Sequences 

ACT CT MIL

Fig. 8 Screenshots of the benchmark experimental results 

TABLE I 

SUCCESS RATE AND CENTRE LOCATION ERROR OF THE PROPOSED ALGORITHM 

Sequences 
Proposed CT MILTrack Number 

SR CLE SR CLE SR CLE    of Frames 
David 98 13 94 14 71 19 462 
Suv 52 54 25 54 35 54 945 

Couple 90 13 69 14 67 14 140 
Carscale 100 89 98 90 65 91 251 
Walking 33 17 31 17 28 17 369 

Coke 54 15 14 15 8 15 291 

The image sequences “David”, “Suv”, “Couple”, 
“CarScale”, “Walking” and “Coke”, taken from [28], were 
used to test the proposed algorithm. The success rate (SR), 
which is the coincidence rate between the tracked bounding 
box and the ground truth bounding box, and the centre loca-
tion error (CLE), which is the Euclidean distance between the 
central points of the tracked bounding box and the ground 
truth bounding box, were adopted to evaluate the performance 
of the proposed algorithm. 

Figure 8 shows some screenshots of tracking results of the 
proposed algorithm. And TABLE I shows the quantitative 

evaluation results of experiments with benchmark sequenc-
es.The results indicated that the robustness to drift, occlusion 
and background clutter of the proposed algorithm was rein-
forced by adopting feature selection method and feature up-
date mechanism. As shown in the first image sequence, results 
of CT and MIL drifted when the face in the image moved er-
ratically at #150, whereas the proposed algorithm was able to 
track the target precisely. As shown in third image sequence, 
the CT tracker and MIL tracker both missed the couple in the 
image when a car with similar Haar-like features appeared, but 
the improved CT tracker avoided this failure by predicting the 
motion trend of the target. As shown in the fourth and sixth 
image sequence, the CT tracker and MIL tracker gradually lost 
the target when it was partial occluded, whereas the proposed 
algorithm successfully detected the car when it reappeared. 
Although the adaptive CT algorithm had a higher success rate 
in the benchmark test, it made little contribution to the per-
formance improvement when illumination variation or long-
term occlusion occurred, as shown in the second and sixth 
image sequence. And the problem of drift still remained. 

B. Robotic Experiments 
In the robotic experiments, 2 image sequences captured 

from the view our robot were adopted to verify the perfor-
mance of the proposed algorithm [29-32]. As shown in Fig. 9, 
drift appeared when the shape of the robot deformed. Limited 
by robustness of adopting appearance models, it seemed that 
the CT and MIL trackers were misled and turned to focus on 
legs of the robot. But the proposed algorithm can still catch up 
the correct position of the target, even the robot’s pose and the 
background changed overtime. And the drift problem was 
relatively alleviated compared with the original CT algorithm. 

 
Fig. 9 Screenshots of the robotic experimental results 

VI.  CONCLUSIONS AND FUTURE WORKS 

Aiming at vision applications of our amphibious spherical 
robots, an adaptive CT algorithm was proposed in this paper. 
A feature selection method was designed to select discrimina-
tive random Haar-like features and maintain adaptive feature 
pools. And an adaptive update mechanism was adopted for 
selectively updating feature templates and classifier parame-
ters of the improved compressive tracking algorithm, which 
alleviated the drift problem. Experimental results demonstrat-
ed that the feature selection method and adaptive update 
mechanism used in the proposed algorithm alleviate the drift 
problem and acquired stronger robustness, which may meet 
requirements of our spherical robots.  



The study in this paper mainly focused on the design of 
the algorithm. But the real-time performance of the proposed 
algorithm and related practical applications still remained a 
problem. Our future work will focus on the parallel implemen-
tation of the proposed algorithm on the robotic embedded plat-
form. 
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