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Abstract We report a novel feature-matching method for

side-scan sonar images. The method uses nonlinear diffu-

sion filtering to build a nonlinear scale space. The noise-

reduction performance is enhanced via nonlinear diffusion

filtering, and the improved Perona–Malik diffusion equa-

tion results in a more distinct edge and line texture in the

side-scan sonar image. The modified feature descriptor

reduces the dimensionality of the feature vector so that the

computational expense is reduced. Experimental results

show that the method provides improved noise-reduction

performance and better accuracy than SIFT, SURF, and

other state-of-the-art feature-matching algorithms.

Keywords Feature matching � Side-scan sonar image �
Nonlinear scale spaces

1 Introduction

The use of side-scan sonar systems together with image-

matching techniques has been particularly useful for ocean

exploration and undersea object detection and recognition.

However, feature matching is often very difficult in

undersea applications because there is typically a large

amount of reverberation noise as well as a low signal-to-

noise ratio, and furthermore, features of sonar images of

objects under the seafloor are very rarely compared with

optical images [1, 2].

There have been a number of methods used for sonar

image matching, including using the highlight area and

shadow zone of sonar images [3]; however, this only works

for images with no orientation or scale change. Rominger

used the theory of belief functions to obtain the optimal

transformation in the registration progress [4]; however, this

incurs a significant computational expense. It is also possi-

ble to extract the corner features of side-scan sonar images

and match them using mutual correlation coefficients [5].

The development of multi-scale image registration

methods has made it possible to match images at different

scales or resolutions with improved accuracy. Vanish used

the scale-invariant feature transform (SIFT) algorithm with

side-scan sonar image registration and found that it per-

formed better than previous methods [6]. The SIFT algo-

rithm, which was first developed by Lowe in [7], is perhaps

the most important achievement in image matching. It uses

linear scale spaces built using a Gaussian filter to extract

keypoints from images to perform reliable matching. The

features are invariant with scale and rotation, and this

method has been used in many different computer vision

applications. However, SIFT is very computationally

expensive and hence time consuming. The PCA-SIFT

algorithm [8] and the speed up robust feature (SURF)

algorithm [9] were proposed to overcome this problem.

The neighborhood of the feature point, which is repre-

sented by a feature vector, is low-dimensional in PCA-

SIFT to make matching faster, and the SURF algorithm

uses integral images and box filters to improve the regis-

tration speed [10]. There have also been reports of SIFT-

like methods, including CSIFT, GLOH, and ASIFT [11–

13]. However, none of these methods can meet the

requirements of real-time applications.
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In the past 2 years, new algorithms based on binary

strings have been developed, which can be used to describe

the keypoints faster, including the oriented fast and rotated

BRIEF(ORB) and fast retina keypoint (FREAK) methods

[14, 15]. These algorithms use a linear scale space built

using a Gaussian low-pass filter, which has hindered their

application in side-scan sonar images. The most important

data in the sonar image are the edge and the line textures.

Therefore, when Gaussian blurring is applied to sonar

images to reduce the noise, some detailed information is

also lost, leading to registration failure. In ECCV 2012,

Alcantarilla et al. exploited KAZE features and used non-

linear filters in image registration. The algorithm improved

the repeatability and distinctiveness in the image matching

[16], bilateral filter combined with SIFT method was

developed to match synthetic aperture radar image fea-

tures, it was found to perform better than SIFT in those

images which were corrupted by speckle noise [17];

however, the price to pay is high time consumption

because of the complexity of the bilateral filter for con-

structing scale space.

In this paper, we describe a novel feature-matching

algorithm based on nonlinear scale space. We use the

nonlinear diffusion equation to eliminate the effects of

noise and, at the same time, enhance the edge and line

textures in side-scan sonar images. The feature vector is

simplified to speed up the calculation. The sufficient image

information preserved and the simplified feature vector

lead to an accurate and fast matching performance.

The remainder of this paper is organized as follows. In

Sect. 2, we introduce the nonlinear scale space based on

the Perona–Malik (P-M) nonlinear diffusion model; Sect. 3

focuses on the feature detection and descriptor for each

keypoint in the nonlinear scale space; a comparison of the

efficiency of our method with the existing algorithms is

given in Sect. 4, together with experimental results. Con-

clusions are drawn in Sect. 5.

2 Construction of nonlinear scale space based
on P-M model

2.1 P-M nonlinear diffusion model

The idea of processing images in scale space was first

developed in the 1980s based on the heat equation, i.e.,

ou

ot
¼ Duðx; y; tÞ; ðx; y; tÞ 2 R

m

uðx; y; 0Þ ¼ uðx; yÞ; ðx; yÞ 2 R
m

(
ð1Þ

where R
m is a bounded open domain and uðx; y; 0Þ ¼

uðx; yÞ is the original image; the solution of Eq. 1 is

uðx; y; tÞ ¼ Gt � uðx; yÞ t[ 0 ð2Þ

Gtðx; yÞ ¼
1ffiffiffiffiffiffiffi
4pt

p exp � x2 þ y2

4t

� �
t[ 0 ð3Þ

At time t, the solution of the heat equation smoothes the

original image using a Gaussian low-pass filter. However,

Eq. 1 is isotropic and smoothes the image identically in all

directions, which does not preserve the edges. To solve this

problem, Perona and Malik developed the P-M diffusion

equation [18], i.e.,

ou

ot
¼ divðgð ruj jÞruÞ; ðx; y; tÞ 2 R

m

uðx; y; 0Þ ¼ uðx; yÞ; ðx; yÞ 2 R
m

(
ð4Þ

where div is the divergence operator and gð ruj jÞ ¼

1= 1þ ruj j
K

� �2� �
2 0; 1½ � is termed the diffusion function

or edge-stropping function and is a function of the mag-

nitude of the gradient, and the parameter K is termed the

diffusion constant and is typically fixed by hand. The dif-

fusion function is adaptive to the edges of the image in the

continuous region; when the magnitude of the gradient of

the image is far\K, gð ruj jÞ � 1; the image is smoothed.

However, at the edges, the magnitude of the gradient is

much[ K, gð ruj jÞ � 0; and the diffusion process is not

carried out; the image will not be smoothed, thus pre-

serving the edge.

2.2 Improved P-M equation

The P-M equation does not have a unique stable solution,

which is a serious problem for sonar image matching. Two

very similar images will typically result in divergent

solutions and therefore different edges will also typically

result in. Catte [19] provided a regularized model, i.e.,

ou

ot
¼ div gð rGr � uj jÞruð Þ; ðx; y; tÞ 2 R

m ð5Þ

where Gr is a Gaussian function with a variance r. Catte
proved that the image diffusion was stable and that Eq. 5

converges to a unique and constant stationary solution.

Moreover, the diffusion function is significant for edge

preservation and image smoothing. We use the following

function to describe the diffusion behavior:

gð ruj jÞ ¼ 1

1þ ruj j
K

� �l ð6Þ

Note that the diffusion function used by Perona and

Malik is a special case of Eq. 6 when l = 2.

Figure 1 shows the relationship between the diffusion

function with the form of Eq. 6 and ru; and Fig. 2 shows a

comparison of the P-M filter and our method. We can see

J Mar Sci Technol (2016) 21:38–47 39

123



that, as ru increases, a larger l makes gð ruj jÞ tend to zero

faster, and when ru decreases, a larger l makes gð ruj jÞ
tend to 1 faster. For convenient computation, we take

l = 4 in this paper, and the revised P-M model can be

written as

ou

ot
¼ divðgð rGr � uj jÞruÞ; ðx; y; tÞ 2 R

m

uðx; y; 0Þ ¼ uðx; yÞ; ðx; yÞ 2 R
m

(
ð7Þ

gð rGr � uj jÞ ¼ 1

1þ rGr�uj j
K

� �4 ð8Þ

Let T ¼ 1ffiffiffiffiffiffiffiffiffi
u2xþu2y

p ux
uy

� �
; N ¼ 1ffiffiffiffiffiffiffiffiffi

u2xþu2y
p �uy

ux

� �
are the unit

vectors along the tangent and normal directions,

cos a ¼ uxffiffiffiffiffiffiffiffiffi
u2xþu2y

p ; sin b ¼ uyffiffiffiffiffiffiffiffiffi
u2xþu2y

p are direction cosines,

then

uT ¼
u2x þ u2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q ; uN ¼ 0

uTT ¼
u2xuxx þ 2uxuyuxy þ u2yuyy

u2x þ u2y

uNN ¼
u2xuyy � 2uxuyuxy þ u2yuxx

u2x þ u2y

uTT þ uNN ¼ uxx þ uyy

ð9Þ

Substituting Eqs. 8 and 9 into Eq. 7,

ou

ot
¼ div gð rGr � uj jÞruð Þ ¼ div ðg rGr � uj jÞ

ux

uy

� �� �

¼ o

ox
gð rGr � uj jÞuxð Þþ o

oy
gð rGr � uj jÞuy
� �

¼ ogð ruj jÞ
o ruj j

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q� �
ox

uxþ
ogð ruj jÞ
o ruj j

o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q� �
oy

uy

þ gð ruj jÞ uTT þ uNNð Þ
¼ gð rGr � uj jÞuT
þ gð rGr � uj jÞþ g0 rGr � uj jð Þ ruj j½ �uN

¼Gr �
k4

k4þ ruj j4
uT þGr �

k4 k4� ruj j4
� �
k4þ ruj j4
� �2 uN ð10Þ

where Gr� is equivalent to the image smoothed

with a Gaussian filter. In the continuous region, the

magnitude of the gradient image is far \K; we then

have

lim
k!1

g Gr � ruj jð Þ ¼ Gr � lim
k!1

k4

k4 þ ruj j4
¼ 1

lim
k!1

gð Gr � ruj jÞ þ g0ð Gr � ruj jÞ ruj j½ �

¼ Gr � lim
k!1

k4 k4 � ruj j4
� �
k4 þ ruj j4
� �2 ¼ 1 ð11Þ

Fig. 1 The relationship between Eq. 6 and ru, K = 50

Fig. 2 The results of smoothed image after P-M filter. a Pseudo-color
sonar image. b Image with serious noise. c P-M filter. d Improved

P-M filter
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The diffusion is applied and the image is smoothed;

however, at the edge region, the gradient magnitude is far

larger than K, and so we have

lim
ruj j!1

g Gr � ruð Þ ¼ Gr � lim
ruj j!1

k4

k4 þ ruj j4
¼ 0

lim
ruj j!1

gð Gr � ruj jÞ þ g0ð Gr � ruj jÞ ruj j½ �

¼ Gr � lim
ruj j!1

k4 k4 � ruj j4
� �
k2 þ ruj j4
� �2 ¼ 0 ð12Þ

The diffusion is not applied, and so the edge is

preserved.

Figure 2 shows the results of smoothed sonar image

with P-M filter and the improved one. All the sonar images

processed in this paper were obtained from a real side-scan

sonar system from a lake.

We evaluate the definition of the smoothed image using

the Brenner value [20], i.e.,

VBrenner ¼
X
M

X
N

ðf ðxþ 2; yÞ � f ðx; yÞÞ2 ð13Þ

where M 9 N is the size of the image; the larger VBrenner is,

the higher the quality of the image. VBrenner reaches highest

when l = 4, as shown in Table 1, when l is large than 4,

the Brenner value goes down because the higher l over-

smoothes the images and destroy the detailed information.

So our method preserves more edges and detail following

smoothing than does the P-M filter.

2.3 Construction of the nonlinear scale space

To build the nonlinear scale space, images under all dif-

ferent scale levels are required; however, the nonlinear

diffusion equation (Eq. 7) has no analytical solution.

Weickert used a linear-implicit iterative method to solve

this equation [21], and the discrete expression and its

solutions are shown in Eqs. 14 and 15, respectively:

uiþ1 � ui

s
¼
Xm
d¼1

AdðuiÞuiþ1 ð14Þ

uiþ1 ¼ I � s
Xm
d¼1

AdðuiÞ
 !�1

ui ð15Þ

where Ad is the conductive d-dimensional matrix, it

encodes the conductivities for the image. If AdðuiÞ is

constant, the diffusion will be linear. If AdðuiÞ is a matrix of

the same size as image ui, the diffusion will be nonlinear. s
is the time step at any length, and I is the identity matrix.

As with SIFT, the discrete scale space is made up of a

series of O octaves and S sub-levels, which correspond to a

scale r, i.e.,

riðo; sÞ ¼ r0 � 2
oþs
S

o 2 ½0; . . .;O� 1�; s 2 ½0; . . .; S� 1�; i 2 ½0; . . .;N� ð16Þ

where r0 is the initial scale level and N = O*S is the total

number of images.

Because nonlinear filtering is diffuse with time, and we

construct a nonlinear scale space using a set of evolution

time points, the discrete scale levels in pixel units ri are
mapped to time units ti. The following mapping formula

was used:

ti ¼
1

2
r2i ; i ¼ f0; . . .;Ng ð17Þ

where ti is the evolution time, which means that filtering an

image at time ti is equivalent to convolving an image with a

Gaussian standard deviation r.
Thus, given an input image, we can build the nonlinear

scale space with evolution time through the diffusion

equation, i.e.,

uiþ1 ¼ ðI � ðtiþ1 � tiÞ �
Xm
d

AdðuiÞÞ�1 � ui ð18Þ

Figure 3 shows a comparison between the linear scale

space built using the Gaussian filter and the nonlinear scale

space for different evolution times using the P-M diffusion

model. It is clear that, in the nonlinear scale space image,

the edges are better preserved.

3 Feature extraction

3.1 Keypoints detection

As with the SIFT algorithm, we use the Hessian determi-

nant to detect local extreme points, which are the points of

interest at the multi-scale level. The Hessian matrix is

defined as

Hðf ðx; yÞÞ ¼

o2f

ox2
o2f

oxoy

o2f

oxoy

o2f

oy2

2
664

3
775 ð19Þ

and the determinant of Hðf ðx; yÞÞ is

detðHÞ ¼ o2f

ox2
o2f

oy2
� o2f

oxoy

� �2

ð20Þ

Table 1 Evaluation of the image

l 2 3 4 6 9

VBrenner 609.66 646.23 847.92 505.34 506.49
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Replacing the value of the function f ðx; yÞ with the

image pixel uðx; yÞ; we can obtain the Hessian matrix in the

multi-scale image space, i.e.,

Hðx; rÞ ¼ Lxxðx; rÞ Lxyðx;rÞ
Lxyðx; rÞ Lyyðx;rÞ

	 

ð21Þ

The corresponding determinant is

detðHðx; rÞÞ ¼ r2ðLxxLyy � L2xyÞ ð22Þ

where Lxx, Lyy, and Lxy represent the second-order hori-

zontal, vertical, and cross-derivatives, respectively. When

looking for an extreme point, every pixel is compared with

Fig. 3 The comparison between linear scale space built by Gaussian

filter and nonlinear scale space for different evolution time through

P-M diffusion model: c–f are linear scale space built by Gaussian

filter with standard deviation of 3.2, 6.4, 12.8, 15.22; g–j are nonlinear
scale space for evolution time of 5.12, 20.48, 81.92, 115.89 s
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its neighbor in the range of a cube of size 3 9 3 9 3. In

Fig. 4, each sample pixel is compared with its nearest eight

neighbors in the same scale image, and nine neighbors in

the higher and lower scale images, which means that the

pixel is compared with 26 neighbor pixels in 3 9 3

regions.

In SIFT algorithm, keypoints are obtained as the max-

ima and minima of the result of a Difference of Gaussians

(DoG) operator applied through a Gaussian scale space. A

pyramid of Gaussian blurred versions of the original image

which are generated by down-sampling is computed to

build the scale space, however, the proposed method

always work with the original image resolution, without

performing down-sampling as done in SIFT, make it more

accurate to detect keypoints.

3.2 Feature vector description

To identify the main orientation for each keypoint, the

first-order derivatives in the horizontal and vertical direc-

tions in a circle with a radius 6r are calculated and

weighted using a Gaussian function, r, which is the scale

level at the center of the keypoint. Rotating a fan-shaped

window around the keypoint with a cover angle of 60� and
summing the vector of derivatives, the longest vector

corresponds to the main orientation of the keypoint, as

shown in Fig. 5.

We selected a region aligned to the main orientation and

centered at the keypoint, and then sampled the first-order

derivatives in a 5 9 5 area every 60� in the horizontal and

vertical directions. The derivatives are Gaussian weighted

to form a four-dimensional vector r ¼
P

Lx;
P

Ly;
�

P
Lxj j;

P
Ly
�� ��Þ, where Lx and Ly represent the first-order

derivatives. We took two circles of such samples, leading

to a 6 9 2 9 4 = 48 dimensional vector, as shown in

Fig. 6, and normalized the vector to obtain the final

descriptor.

4 Experimental results

In this section, experimental results are discussed to assess

the performance of the method. Data were obtained using

Visual Studio 2008 with a 3.10-GHz core processor and

Fig. 4 The extreme detection at different scale spaces

Fig. 5 A fan-shaped window slides around the keypoint to sum up

the vector of derivatives responds

Fig. 6 Illustrated diagram of the descriptor

Fig. 7 Two side-scan sonar images with noise
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Fig. 8 Side-scan sonar image matching example with different algorithms: a SIFT, b SURF, c ORB, d FREAK, e bilateral SIFT, f KAZE,
g proposed method

44 J Mar Sci Technol (2016) 21:38–47

123



3.99 GB of RAM. The code is implemented in C?? based

on OpenCV. Features are typically matched using the

strategy of nearest-neighbor distance ratio (NNDR), which

was developed by Lowe [6] and the strategy of random

sample consensus (RANSAC), which was developed by

Fischler and Bolles [22].

Figure 7 shows two side-scan images at different scales

obtained by side-scan sonar from the opposite direction,

which are corrupted by noise. For comparison, existing

state-of-the-art algorithms are shown in Fig. 8; Fig. 8a–f

shows images matched using SIFT, SURF, ORB,

FREAK, BFSIFT and KAZE, and Fig. 8g shows the

results of our method. Table 2 shows the effect of l on

the matching result, the P-M equation with l = 2 had the

lowest match rate, the match rate reached highest when

l = 4 and went down when l[ 4, that was because the

diffusion equation over-smoothed detailed information of

the image, which was consistent with the result in

Table 1. The data listed in Table 3 show that the SIFT,

SURF, ORB, BFSIFT and FREAK algorithms had the

lowest performance of match from the noisy data, and

mismatched most keypoints with strategy of NNDR and

RANSAC. So it is clear that methods based on linear

scale space did not work well when applying to side-scan

sonar images. KAZE gave a high match rate compared to

the formal methods, however, mismatches are still obvi-

ous. The proposed method gave the highest match rates

because the nonlinear diffusion filter with the modified

P-M equation preserves more edge and detailed infor-

mation, so that the features are preserved and can be

extracted more accurately.

Table 4 lists the computational time for the image

matching; ORB and FREAK were the fastest methods

because they do not build a scale space when detecting

keypoints, and they use binary strings to speed up the

feature description. It is interesting that SURF cost more

time than SIFT, maybe because the SIFT code in OpenCV

was optimized. Note that BFSIFT, which used the latest

edge-preserving smoothing method, detected more key-

points and matched a little more than SIFT; however, due

to the complexity of the bilateral filter for constructing

scale space, the time consumed was about 1.5 times as high

as SIFT. However, our method was comparable to the

KAZE algorithms and performed better than any of the

other matching algorithms.

We built a dataset of sonar images with different

conditions to test the performance of our method. The

sonar images had severe noise degradation, as shown in

Fig. 9. The resolution of the datasets PLAIN, WRECK,

and TERRACE were 503 9 700, 529 9 619, and

989 9 466 pixels, respectively. The results of the eval-

uation are shown in Fig. 10. Our method required more

time for computation than the ORB and FREAK meth-

ods; however, ours was faster than any of the other

algorithms, and the matching rate was the highest of all

the methods.

5 Conclusions

We have described a feature-matching algorithm based on

a nonlinear scale space constructed using a nonlinear dif-

fusion equation for side-scan sonar image applications. We

Table 2 Effect of value l on the matching result

l 2 3 4 6 9

Match rate 35.6 % 36 % 60 % 11 % 10.4 %

Table 3 Comparison of the matching algorithms

Method Total

keypoints

Correct matched

keypoints

Match

rate (%)

SIFT ? RANSAC 981 41 4.2

SURF ? RANSAC 1661 51 3.1

ORB ? RANSAC 500 60 12

FREAK ? RANSAC 275 23 8.4

BFSIFT ? RANSAC 1014 44 4.3

KAZE ? RANSAC 416 148 35.6

Proposed method 175 105 60

Table 4 Time consumption

Method Feature detection and

description time (s)

SIFT ? RANSAC 3.4

SURF ? RANSAC 3.6

ORB ? RANSAC 0.27

FREAK ? RANSAC 0.23

BFSIFT ? RANSAC 5.1

KAZE ? RANAC 2.36

Proposed method 2.25
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achieved excellent noise-reduction performance using the

nonlinear diffusion filter, and the modified P-M equation

preserves much of the edge and line texture information of

the sonar image. The descriptor we designed decreases the

dimensionality of the feature vector. The experimental

results described here demonstrate that our method out-

performs the existing state-of-the-art methods.
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