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these models were incorporated into the robot design to 

determine the natural frequencies and the associated mode 

shapes of the first six orders. The procedure and analy-

sis results are described in this paper. The fatigue life of 

these critical components was examined using the cyclic 

load spectrum and cyclic stress as a function of number of 

cycles to failure (S–N curve) of acrylonitrile butadiene sty-

rene plastic, the construction material for the robot. Finite 

element analysis was used for design optimization relevant 

to fatigue life, damage, safety, and fatigue sensitivity, and 

the weak areas in the components were identified. The 

approach described herein provides a theoretical basis for 

robotics design optimization.

1 Introduction

With the aim of creating faster, lighter, and cheaper robots, 

a considerable amount of theoretical and experimental 

research has been carried out in the field of robotics, from 

various perspectives (He et al. 2015; He et al. 2014; Pan 

et al. 2014; Pan et al. 2015; Shi et al. 2013b). A main focus 

of the research is analysis of the static and dynamic charac-

teristics of robotic structures, such as structural statics and 

modal analysis, fatigue and harmonic response analysis, 

and kinematic and dynamic analysis (Shi et al. 2014; Guo 

et al. 2012). Results from static and dynamic analyses may 

verify a number of crucial components for robotic design 

and simultaneously determine the expected degree of 

fatigue life of these components in the design phase. These 

analysis results also provide a database of reliable refer-

ences for future structural improvements and optimization 

of the robot’s design (Miclosina and Campian 2012; Bayo 

et al. 1989; Cho et al. 2013).

Abstract With continuous improvements being made in 

science, technology, and production automation, robotics 

is becoming increasingly popular in the field of automa-

tion. Robotics has the potential to improve work efficiency, 

reduce production cost, protect humans from adverse con-

ditions, and increase production scale. A three-dimensional 

(3D) printed amphibious spherical robot was designed to 

operate in various environments with a wide-range of com-

plex conditions over a long period of time. The compact, 

fully waterproof design has the advantages of a reduced 

manufacturing time, high efficiency, good mobility, low 

noise, and reliable stability. This study considers how 

some of the more critical components of the robot, such as 

its leg brackets, circular middle plate, and spherical shell, 

respond to large dynamic stresses, shocks, and vibrations 

during operation; this can lead to reduced precision of the 

robot’s locomotion and may cause critical components to 

become damaged or fail. To design the robot with a more 

rigid structure and improved dynamic characteristics, 3D 

models of the critical components were constructed with 

SolidWorks. Using ANSYS WORKBENCH software, 
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Modal analysis is the process of determining the inher-

ent dynamic characteristics of a structure by observing 

natural frequencies, damping factors, and mode shapes, 

and then using these results to generate a mathematical 

model of the dynamic characteristics. Modal analysis deter-

mines the natural frequency and main mode shapes of the 

structure, which in turn can be used as a starting point for 

other, more detailed analyses, such as a transient dynamic 

analysis and harmonic response analysis. Vibrations, fre-

quently encountered by the structures, could lead to reso-

nance phenomena and potentially catastrophic damage of 

the structure. Thus, a vital part of the design and manufac-

turing process is an investigation of the natural frequencies 

and modes of the robotic mechanism. Moreover, modal 

analysis plays an important role in dynamic analysis of the 

mechanism and the failure forecast of its structural system, 

as well as design optimization. To date, several modal anal-

yses of robots have been presented. In (Yang et al. 2013), 

a simple modal analysis and harmonic response analysis 

based on ANSYS were presented; the results showed that 

simulations are relatively reliable when used for engineer-

ing analysis. In (Zhang et al. 2012), modal and static analy-

ses were carried out by simplifying several key components 

of a friction-stir spot-welding robot; the inherent frequency, 

vibration mode, stress, and deformation distribution were 

obtained. Hao et al. (2014) carried out modal analysis of 

a four degrees of freedom (DOF) Cartesian transfer robot 

to extract the first six orders of natural frequency and the 

response of the robot under a harmonic load.

In addition to modal analysis, much of the research in 

structural static analysis has revealed that fatigue is a com-

mon cause of structural failure. This damage stems from 

repeated application of the load to the mechanism (e.g., 

long-term rotating gears and impellers). There are vary-

ing degrees of fatigue damage, ranging from that of indi-

vidual components to complete part failure. Fatigue is 

usually divided into two categories: high-cycle and low-

cycle fatigue. High-cycle fatigue involves a high number 

of cycles, with the load being generated by the casing. In 

this instance, the stress is typically lower than the ultimate 

strength of the material. Stress fatigue is used to calculate 

high-cycle fatigue. Low cycle fatigue occurs over a rela-

tively low number of cycles and is often accompanied by 

plastic deformation. It is generally understood that strain 

should be used to calculate low-cycle fatigue. In simula-

tions, the fatigue module add-on is generally based on 

stress fatigue theory; thus, the module must be adapted to 

high-cycle fatigue (Mayer et al. 2000). In recent years, var-

ious types of dynamic stress and fatigue characteristics of 

robots have been investigated. Du et al. (2007) of Beijing 

University of Technology, analyzed the fatigue failure of a 

flexible robot due to alternative dynamic stress; the fatigue 

lives of the links were predicted based on the cumulative 

damage rule. Miclosina et al. (2012) presented a fatigue 

analysis of low level links of a parallel topology robot guid-

ing device mechanism.

In this study, we examined the critical components of 

our custom-designed amphibious spherical robot, specifi-

cally, the leg bracket, circular middle plate, and spherical 

shell substructures. We determined above three kinds of 

critical components according to their materials and stress 

conditions. First, while walking, the circular middle plate 

experiences pressure from parts in the upper hemispheri-

cal shell as well as tension forces and moments generated 

by the legs. Second, the amphibious spherical robot mainly 

uses its four legs to walk on different land environments. 

While walking, the leg brackets require more strength 

than the other parts because they are subjected to the force 

exerted by the upper hemisphere, and to the axial force and 

moments from the fixed motor and leg structure. Third, 

when the robot is moving in water, the hemispherical shell 

the hemispherical shell must have sufficient strength to 

remain watertight. The amphibious spherical robot, shown 

in Fig. 1, was constructed using three-dimensional printing 

technology. The shell of the robot consists of a hemispheri-

cal upper hull (diameter: 250 mm) and two quarter-sphere 

lower hulls (diameter: 266 mm) that can open and close. 

The hard upper hull is waterproof and serves to protect the 

internal electronics and batteries from collisions, an inte-

gral part of the design. However, the design simplification 

method for these components, which considers static inten-

sity, is highly complex; thus, there is the potential for these 

components to resonate as the robot moves. Modal analysis 

can be used to identify the frequency source of component 

vibration/resonation, to enhance the stability of the sys-

tem in the design stages. The amphibious spherical robot 

is constructed from acrylonitrile butadiene styrene (ABS), 

as described in our previous work (He et al. 2014; Pan et al. 

2014). ABS material is known to have a good overall per-

formance, such as high impact strength, favorable electrical 

properties, and excellent mechanical properties. ABS mate-

rial, however, also has several drawbacks, such as a poor 

weather resistance and a low heat distortion temperature, 

and is potentially combustible. Also, this material tends 

to degrade under ultraviolet irradiation. Thus, 6 months of 

outdoor exposure to the elements has been shown to reduce 

the impact strength of ABS by half. Considering the char-

acteristics of ABS, and the cost involved in robot design 

and construction, it is essential to perform fatigue charac-

teristic analysis of the robot’s critical components to pre-

serve its performance and structural integrity.

The structure of this paper is as follows. In Sect. 2, a 

simplified 3D model of the critical components of the robot 

is presented along with modal analysis using finite element 

analysis software ANSYS WORKBENCH. In connection 

with the stress fatigue theory-based approach, the fatigue 
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life of the three critical components (the leg bracket, cir-

cular middle plate, and spherical shell substructures) are 

analyzed and discussed in Sect. 3; the fatigue damage and 

safety factors of these components are presented. Sect. 4 

provides a summary and discusses the direction of future 

work in this area.

2  Numerical methods

2.1  Basic theories of modal analysis

Modal analysis is a technique used to determine the vibra-

tion characteristics of mechanisms as well as the natural 

frequencies and mode shapes. Modal analysis is the basis 

of all kinetic analysis. For a common structural system 

with multi-degrees of freedom, the movement can be syn-

thesized by free vibration modes. Frequency modes are 

an intrinsic characteristic of structural systems, with each 

mode exhibiting a unique natural frequency, damping 

ratio, and corresponding mode shape (Feng et al. 2012; 

Lu et al. 2012). In mechanical design, the main purpose of 

modal analysis is to avoid resonant frequencies. Based on 

the theory of modal analysis and elasticity, the differential 

equation of motion for multi-degrees of freedom is given in 

Eq. (1):

where [M] represent the structural mass matrix, [C] is the 

structural damping matrix, [K] is the structure stiffness 

matrix, {
..

X} is the nodal acceleration vector, {
.

X} is the 

node velocity vector, {X} is the node displacement vector, 

(1)[M]{
..

X} + [C]{
.

X} + [K]{X} = {F(t)}

{F(t)} is the applied time- varying nodal load vector, and t 

is the corresponding time.

Natural frequency and principal mode shape are two 

highly important measures when considering the dynamic 

characteristics of mechanical structures. These only relate 

to the structural characteristics of the system and the mass 

distribution of the structure, and do not consider exter-

nal factors. Consequently, in this paper, the design was 
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Fig. 1  Three-dimensional (3D) printing technology based on an amphibious spherical robot (He et al. 2015). a Spherical shell closing mode, b 

spherical shell opening mode
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analyzed as if it was a free vibration system when investi-

gating the natural frequencies. The external exciting force 

was zero, and F(t) = 0 in Eq. (1). In the modal analysis of 

the mechanical structure, damping had little effect. There-

fore, damping was considered to be negligible when solv-

ing for the free vibration frequencies and mode shapes of 

the model. The undamped vibration equation is described 

as follows: 

where [M] and [K] are both constant due to the linear 

design of the leg bracket, the circular middle plate, and the 

spherical shell. It was assumed that the particles exhibit 

the same frequency, as a result of simple harmonic motion; 

therefore Eq. (2) can be modified to the following form:

where {Φ} denotes the amplitude vector, ωi indicates the 

natural frequency of system, and Φ is the epoch angle. 

After modification, the motion variables were changed to 

the following:

From the known vector, we obtain a non-zero solution; 

the coefficient of the determinant is 0, namely

From this, the characteristic equations of the system are 

given as follows:

The roots of the equation are ωi, ω2 . . . ωn. The n-roots 

obtained correspond to n-order natural frequencies for the 

system: ωi, ω2 . . . ωn. Inserting ωi, ω2 . . . ωn, into Eq. (4), 

we obtain the following:

where {Φ
(1)}, {Φ

(2)},…{Φ
(n)} represents the vibration 

mode of the leg bracket, circular middle plate, and spheri-

cal shell, respectively.

2.2  Fatigue analysis theory

Figure 2 shows the design structure of the robot. The pro-

cess of fatigue analysis of the design includes five steps. 

First, the overall structure design of the robot is defined. 

Second, the stress concentration points of the design 

structure are confirmed using the fatigue load spectrum 

for fatigue life prediction. This is completed using finite 

element analysis. The remaining three steps consist of 

(2)[M]{
..

X} + [K]{X} = 0

(3){X(t)} = {Φ}ejwi t

(4)

(

−ω
2
i [M]

)

+ [K]){{Φ}ejwi t } = 0

(5)

∣

∣

∣
[K] − ω

2
i
[M]

∣

∣

∣
= 0

(6)ω
2n

+ α1ω
2(n−1)

+ · · · + αn−1ω
2
+ αn = 0

(7)

(

[K] − ω2
i
[M]

){

Φ(i)
}

= 0 i = 1, 2, 3 · · · n

analyzing the related results, modifying the design via an 

iterative process, and improving/optimizing the design 

for the given solution (Bae et al. 2011; Huang et al. 2011; 

Ghaffari and Hosseini-Toudeshky 2013; Wang et al. 2012).

Fig. 2  Fatigue analysis design process

Fig. 3  Cyclic stress–number of cycles to failure (S–N) curve of the 

acrylonitrile butadiene styrene (ABS) material

Fig. 4  Meshing result of circular middle plate

Table 1  Natural frequency of the first six orders (circular middle 

plate)

Mode Natural frequency/Hz Mode Natural frequency/Hz

1 576.52 4 1707

2 1012.9 5 1737.9

3 1284.2 6 2310.6
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Prior to fatigue design, it is necessary to define the 

fatigue graph of the ABS material. The fatigue curves refer 

to the curve of the material between alternating stress and 

fracture cycles. The fatigue curves are divided into the 

cyclic stress–number of cycles to failure (S–N) curve and 

the equivalent lifetime curve. In this paper, we adopt the 

S–N curve of the ABS material, which depicts the rela-

tionship between the stress amplitude level that the mate-

rial can withstand and the number of stress cycles possible 

when the stress amplitude reaches fatigue failure. Accord-

ing to engineering plastic fatigue curve theory, the S–N 

curve can be simplified using the power function method:

(a) 1st mode shape (b) 2nd mode shape

(c) 3rd mode shape (d) 4th mode shape

(e) 5th mode shape (f) 5th mode shape

Fig. 5  Modal analysis of the former six orders. a 1st mode shape, b 2nd mode shape, c 3rd mode shape, d 4th mode shape, e 5th mode shape,  

f 5th mode shape
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where m and C are material constants, S is the stress indica-

tor, and N is the stress cycle number. By taking the log of 

both sides and assigning a = lg C, and b = − m, Eq. (9) 

can be converted to the following:

The S–N curve of the ABS material may be expressed as 

a linear expression, or as a semi-log or double logarithmic 

(log–log) curve. Here, we adopted the “log–log” S–N curve 

of the ABS material, as shown in Fig. 3. According to the 

ABS S–N curve, the relationship between alternating stress 

cycles can be used to directly determine whether the fatigue 

life of the component could surpass the design requirements.

In the natural state, the elastic modulus of ABS is 2 

GPa, the density is 1025 kg/m3, the strength of extension is 

38 MPa, the shear strength is 50 MPa, and Poisson’s ratio 

is 0.394. In cases in which the survival curve of fatigue 

analysis is 90 %, the circular middle plate suffers relatively 

large repeated force as the robot walks; for example, the 

middle plate experiences pressure from parts in the upper 

hemispherical shell as well as tension forces and moments 

generated by the legs. In the simulations, similar forces and 

moments were applied to the circular middle plate con-

struct to determine the fatigue life, fatigue sensitivity, and 

other related parameters.

Mean stress was shown to have a large impact on fatigue 

life. Compression (tension) typically increases (decreases) 

fatigue strength and life. Mean stress correction theory is 

mainly divided into four categories: SN-None, Goodman, 

Soderberg, and Gerber approaches (Harmain 2010). In 

this work, the SN-None mean stress correction theory was 

adopted.

(9)S
m

N = C

(10)lg N = a + b lg S

3  Modal analysis of the critical components

The first procedure when performing modal analysis is to 

define the unit and material properties, including the meshing. 

First, a 3D solid model of the components was built in Solid-

Works and input into ANSYS WORKBENCH. For the pur-

pose of reducing calculation time and enhancing the accuracy 

of modal analysis, a number of structural features, such as 

threaded holes, were removed as these have little effect on the 

analysis results. The associated parameters of ABS (elastic 

modulus: 2 GPa; density: 1025 kg/m3; Poisson’s ratio: 0.394) 

were used. In this research, the element size determines the 

accuracy of the overall results; the element size was set to 

5 mm. While walking, the circular middle plate and the leg 

brackets are exposed to more forces and moments and require 

more strength than that in water. So, we just carried out the 

modal analysis of the circular middle plate and leg brackets 

when the robot is walking on land. When the robot is moving 

in water, the hemispherical shell must have sufficient strength 

to remain watertight, for the robot control system and circuit 

boards, batteries, and sensors must not come into contact with 

water. So, we just carried out the modal analysis of the hemi-

spherical shell when the robot is moving in water. The mesh-

ing result of the circular middle plate is shown in Fig. 4. The 

mesh was generated using ANSYS Workbench, with a total 

of 31,117 units and 54,876 nodes.

Fig. 6  Meshing results of the leg brackets with different states. a Walking mode, b mode in water

Table 2  Natural frequency of the first six orders (walking state)

Mode Natural frequency/Hz Mode Natural frequency/Hz

1 25.62 4 115.91

2 28.107 5 193.67

3 98.475 6 255.11
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The following depicts the modal settings, boundary 

conditions definition, and solution. In this paper, only the 

modal analysis of the circular middle plate was used to find 

the natural frequency and main vibration mode, to provide 

a basis for subsequent dynamic analysis. Thus, the freedom 

of the design required that it was constrained; however, 

extra loading was not necessary. Regarding the finite ele-

ment modal analysis, ANSYS WORKBENCH software 

provides a variety of solution methods. Currently, the 

Block Lanczos method is considered to be the most effec-

tive for solving large eigenvalue problems and is widely 

used due to its high accuracy and rapid calculation speed. 

(e) 5th mode shape (f) 5th mode shape

(a) 1st mode shape (b) 2nd mode shape

(c) 3rd mode shape (d) 4th mode shape

Fig. 7  Modal analysis of the former six orders (walking state). a 1st mode shape, b 2nd mode shape, c 3rd mode shape, d 4th mode shape, e 5th 

mode shape, f 5th mode shape
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Generally speaking, for the modes of a given system, the 

lowest order mode of the natural frequency has the greatest 

impact (Feng et al. 2012; Gong et al. 2014; Gok et al. 2014; 

Wang 2014). Consequently, the Block Lanczos method was 

adopted to extract six-order vibration modes of the natural 

frequency for the key components. The six-order vibration 

modes of the circular middle plate are shown below and 

the natural frequencies and node locations for each order 

are listed in Table 1; the mode shapes are shown in Fig. 5. 

From the analyzed results, the six-order frequencies were 

mainly concentrated over the 576.52–2310.6-Hz frequency 

range; the maximum displacement ranged from 151.3 to 

167.79 mm.

With regard to the proposed 3D robot design, by means 

of changing the gait of its four legs, the robot can walk and 

rotate at different speeds on land. Simultaneously, while in 

an underwater environment, by changing the directions and 

propulsive forces of its four vectored propellers, the robot 

can not only move forward and backward but also rotate 

clockwise and counter-clockwise, as would be required 

during a dive or suspension. Each leg bracket is composed 

of a carriage, a water-jet motor, and two servo motors, and 

each has two DOFs (Fig. 6); the robot can generate forward 

propulsion in water via a water-jet mechanism, is capable 

of 120° rotation, and can provide a maximum torque of 

2 kg cm. With this structure, both vectored water-jet and 

quadruped walking can be realized in one actuating system; 

hence, the system is referred to as a hybrid actuating sys-

tem. The leg brackets of the robot are modeled in ANSYS, 

as shown in Fig. 6. In this analysis, a solid consisting of 20 

nodes and l86 elements was used to model the leg brack-

ets. The material properties of the leg brackets were pre-

defined in the ANSYS software, as well as the ABS plastic. 

Smart Grid was used to mesh the model (203,600 nodes 

and 110,534 elements).

A series of finite element modal analyses of leg brackets 

structures were carried out in different situations: walking on 

land and moving underwater; the static state was modelled as 

well. Here, we only list the minimal six-order natural frequen-

cies of the leg bracket when the robot is walking (Table 2); 

the corresponding mode shapes are shown in Fig. 7.

When the robot is in a stationary state, the excitation fre-

quency can be obtained using Eq. (8):

where f (Hz) is the excitation frequency of the servo motor, 

n (rpm) is the speed of the servo motor, and δis the speed 

error of the servo motor.

In this design, we selected a suitable direct current (DC) 

servo motor (HS-5086WP), with a running voltage of 6 V and 

rotating speed of 20 rpm. Taking into account that the error 

of the motor speed is 50, the calculated excitation frequency 

ranged from 0.33 to 1 Hz, which is much smaller than the 

former sixth-order natural frequency of the structure. Conse-

quently, the results indicated that throughout the course of robot 

operation, while moving or in a stationary state, the strength and 

reliability of the leg support structure should be sufficient.

In an underwater environment, when the robot is actu-

ated by a servo motor, the two shells are closed to keep the 

robot in a spherical shape and maintain the watertight struc-

ture, as shown in Fig. 1 (right). However, while the robot is 

(8)f =

n ± δ

60
× 2

Fig. 8  Meshing result of the robot with different states. a Walking mode, b mode in water

Table 3  Natural frequency of the first six orders (closed state)

Mode Natural frequency/Hz Mode Natural frequency/Hz

1 9.1826 4 9.2438

2 9.1852 5 19.721

3 9.2406 6 19.984
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walking, the two upper shells are actuated by the servo motor 

to open and close as necessary. As a result, we implemented 

additional modal analysis of these spherical shells in different 

states. Figure 8 depicts the meshing results of the spherical 

shell in its opened and closed states, using the material param-

eters and modeling method discussed above. Thus, with the 

element set to ‘Default’, Smart Grid provided a mesh for the 

model, generating 120,783 nodes and 645,837 elements.

(a) 1st mode shape (b) 2nd mode shape

(c) 3rd mode shape (d) 4th mode shape

(e) 5th mode shape (f) 5th mode shape

Fig. 9  Modal analysis of the former six orders (closed state). a 1st mode shape, b 2nd mode shape, c 3rd mode shape, d 4th mode shape, e 5th 

mode shape, f 5th mode shape
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The state for the minimal six-order natural frequen-

cies was generated; the corresponding results are shown in 

Table 3 and Fig. 9. The six-order frequencies typically ranged 

from 9.1826 to 19.984 Hz, and the maximum displacement 

ranged from 172.6 to 224.19 mm. The maximum excitation 

frequency of the servo motor is 0.43 Hz, which is far less 

than the first-order natural frequency of the spherical shell of 

9.1826 Hz. Thus, the design of the spherical shell is sufficient.

4  Analysis of fatigue characteristics

When the amphibious spherical robot is working in an 

underwater environment, some components of the robot, 

such as the leg bracket, circular middle plate, and spherical 

shell, are subjected to considerable impact forces from the 

water. These forces can vary over time. Under cyclic loading, 

the performance of these components gradually declines, 

with cracks appearing and even extending to fractures under 

certain load cycles. This phenomenon is called fatigue fail-

ure. Over the course of the mechanical design process, the 

fatigue characteristics analysis of critical components is cru-

cial for strength, resilience, and reliable performance.

For the fatigue characteristics analysis, we should con-

sider the critical components that are exposed to more 

forces and moments. So, we carried out the fatigue analysis 

of the circular middle plate and leg brackets when the robot 

was walking on land, and carried out the fatigue analysis 

of the hemispherical shell when the robot was moving in 

water.

Fig. 10  Comparison results of equivalent alternating stress

Fig. 11  Comparison results of the safety factor
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Fig. 12  Comparison results 

of fatigue sensitivity with the 

circular middle plate, a original 

state, b optimized state

Fig. 13  Equivalent alternat-

ing stress analysis of the leg 

brackets

A
u

th
o

r
 P

r
o

o
f



U
N

C
O

R
R

E
C

T
E
D

 P
R
O

O
F

Journal : Large 542 Dispatch : 20-7-2016 Pages : 15

Article No : 3083 ¨  LE ¨  TYPESET

MS Code : MITE-D-16-00085 þ   CP þ   DISK

 Microsyst Technol

1 3

We calculated the fatigue life of the circular middle 

plate using ANSYS Workbench. By selecting SN-None 

as the mean stress correction theory, the design life cycles 

were determined from 1 × 108 cycles. The fatigue life of 

the circular middle plate was determined using pre-defined 

parameters, to obtain the fatigue damage and fatigue 

sensitivity.

The life of the design was represented as the number 

of cycles to structural failure owing to the fatigue effect. 

Because the input is a load spectrum, this value indicates 

the cycle number of the load spectrum. Based on the S–N 

curve, the maximum life of the ABS material is 1 × 108 

cycles. In this paper, a cycle refers to the state of the robot 

when making one step. The maximum equivalent alternat-

ing stress, along with the smallest fatigue life, of the cir-

cular middle plate at its four fixed holes was calculated. A 

number of slice gaskets were added to the fixed holes to 

decrease the equivalent alternating stress and increase the 

fatigue life. To determine the impact of this, we exam-

ined the alternating stress of two holes surrounded by slice 

gaskets; the results showed that the equivalent alternating 

stress of these two modified fixed holes decreased signifi-

cantly from 3.8975 × 107 Pa to 6.466 × 106 Pa with the 

addition of the gaskets. A comparison of the equivalent 

alternating stress is shown in Fig. 10. The safety factor is 

another indicator for optimization. The results illustrated 

Fig. 14  Safety factor analysis 

of the leg brackets

Fig. 15  Fatigue sensitivity 

analysis of the leg brackets
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that the safety factor increased from 2.2139 to 11.667 with 

the gasket addition; the results of the comparison are shown 

in Fig. 11 (Su et al. 2013).

Damage is defined as the ratio of designed life to useful 

life. When the value of damage is less than 1, the compo-

nent does not produce fatigue failure during the designed 

life cycles. In contrast, when the value of damage is greater 

than l, fatigue damage will occur. Our simulation results 

showed that the maximum damage of the circular middle 

plate was 0.3498, which indicates that the circular mid-

dle plate does not produce fatigue failure throughout its 

design life. The safety factor is the ratio of failure stress 

to designed stress of the material. The safety factor must 

be greater than 1 to meet the relevant design requirements 

(Ozmen et al. 2009). From the analysis, the minimum 

safety factor of the circular middle plate was 2.2139 at 

its four fixed holes, and the safety factor of the two fixed 

holes greatly increased when the slice gaskets were added. 

Therefore, the safety factor for the optimized circular mid-

dle plate satisfies the design requirements.

Figure 12 shows comparison results of the fatigue sensi-

tivity of the modified circular middle plate. Figure 12a shows 

that the available cycles for the original design were typically 

1.12 × 105 cycles. Figure 12b shows that the available cycles 

for the optimized design were of the order 1 × 106 cycles, 

showing a significant increase in the lifetime of the circular 

middle plate with the addition of two slice gaskets. Note that 

the abscissa in the figures represents the number of cycles; 

thus, the figures show the maximum fatigue stress that the 

components can withstand for the given alternating loads for 

design optimization (Li et al. 2014).

With respect to the robot, the structural strength and per-

formance of its four leg brackets are critical. During the 

process of fatigue analysis, a number of the material param-

eters were the same as those for the circular middle plate. 

The forces were not limited to axial moments exerted from 

the fixed motors. As a result of previous investigations of the 

static analysis of the leg brackets, the joints were optimized 

to a circular shape; this design adjustment was expected to 

increase the structural strength of the leg brackets, as well 

as its compression performance (Zhao et al. 2008). The 

results demonstrated that the maximum equivalent alternat-

ing stress was located at the fixed holes, shown in Fig. 13. 

Therefore, slice gaskets were added to the leg bracket struc-

ture, as described for the other components. It was concluded 

that the fatigue life of the optimized leg brackets was largely 

enhanced, with a minimum safety factor of 2.5546, as shown 

in Fig. 14. Additionally the simulation results showed that the 

maximum fatigue damage of the leg brackets was 0.67801. 

The available life of the leg brackets is typically 1 × 106 

cycles, as shown in Fig. 15. Consequently, the fatigue dam-

age, safety factor, and the available life of the leg brackets 

projected all satisfied the structured design requirements.

Owing to the fact that the robot’s working environment is 

often complicated, the hemispherical robot shell suffers varia-

ble pressure from different directions, meaning that the struc-

tural strength of the hemispherical robot shell is also a crucial 

factor in the design. Because the robot’s control system and 

additional components are installed in the upper hemisphere, 

and cannot come into contact with water, we simulated a real 

underwater environment using the finite element analysis 

method to predict the fatigue life of the spherical shell.

Fig. 16  Equivalent alternating 

stress analysis of the spherical 

shell
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According to simulation results, a number of optimization 

operations were required. The refined hemispherical robot 

shell met the strength and safety requirements in water at a 

depth of <11 m, as shown in previous experimental results. 

From these mechanical analyses, the fatigue life analysis of 

spherical robot shell was carried out. The maximum equiva-

lent alternating stress of the spherical shell was 5.1702 × 107 

Pa, as shown in Fig. 16. The minimum safety factor of the 

spherical shell was 1.6673 (Fig. 17). Thus, the safety factor 

of the spherical shell exceeds 1, meeting the design require-

ments. Also, the maximum fatigue damage of the spherical 

shell is 0.3265. Figure 18 shows that the available life of the 

spherical shell of 1.0 × 106 cycles. Therefore the fatigue 

damage, safety factor, and the available life of the spherical 

shell all meet the requirements of the design.

5  Conclusions

In this article, the natural frequencies and corresponding 

mode shapes of the first six orders for the critical compo-

nents of the robot were found. Moreover, according to the 

cyclic load spectrum and S–N curve of the ABS material, 

the fatigue life of these critical components were discussed, 

and the fatigue damage, safety factors, and fatigue sensitiv-

ity were determined.

Modal analysis results showed that some of the fixed 

holes exhibited larger vibrations; therefore, these locations 

were more susceptible to fatigue and damage. It was neces-

sary to increase the fatigue strength of these components by 

adding additional slice gaskets. The analytical results illus-

trated the natural frequencies of these critical components 

Fig. 17  Safety factor analysis 

of the spherical shell

Fig. 18  Fatigue sensitivity 

analysis of the spherical shell
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under typical working conditions. To prevent resonance 

phenomenon, the robot should avoid these frequencies, as 

much as possible, during the course of operation.

Several related parameters, fatigue life, fatigue damage, 

safety factor, and fatigue sensitivity, were obtained from 

the fatigue life analysis of these components. The improved 

model and the results met our expectations. These results, 

from both modal analysis and fatigue life analysis, veri-

fied that the critical components of the robot design met 

the design requirements. Thus, the approach outlined in 

this paper provides a reliable reference for future structural 

design and optimization of robots. If the materials of criti-

cal components are changed from ABS to the steel, these 

critical components will also meet robot’s requirements, 

for the strength, the resonant frequencies, and fatigue life 

of steel are much larger than that of ABS. Future work will 

also focus on kinematic and dynamic characteristics of the 

robot under different working environments.
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