
RGB-D Camera-based Tracking System for  
an Amphibious Spherical Robot 

 

Shaowu Pan1, 2, Shuxiang Guo1, 2, 3, Liwei Shi1, 2, *, Ping Guo1, 2, Huiming Xing1, 2, Shuxiang Su1, 2 and Zhan Chen1, 2 
1 Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, the Ministry of Industry and Infor-

mation Technology, School of Life Science, Beijing Institute of Technology, No.5, Zhongguancun South Street, Haidian District, 
100081 Beijing, China.  

2 Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of Technology, No.5, Zhongguan-
cun South Street, Haidian District, 100081 Beijing, China. 

3 Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Japan. 
panshaowu@bit.edu.cn, guoshuxiang@bit.edu.cn, shiliwei@bit.edu.cn 

*Corresponding author 
 

Abstract – To execute vision-based tasks of the amphibious 
spherical robot, a visual tracking system was designed and con-
structed. A RGB-D camera was calibrated in the amphibious en-
vironments and was then used to perceive the surroundings of the 
robot. A RGB-D tracker, which was capable of handling occlu-
sions and scale changes of the target, was built upon the KCF 
tracker to locate the target object. HoG and CN features in the 
color images were extracted to describe the target object. The scale 
and position models of the object was established using the Gauss-
ian model and the depth histogram of the object. The occlusion 
event was recognized by segmenting the depth image and using an 
empirical formula. The online update process of the KCF tracker 
was temporarily stopped once an occlusion event was detected. Ex-
perimental results with various image sequences in amphibious 
environments demonstrated the effectiveness and robustness of 
the proposed tracking algorithm, which can meet the application 
requirements of the amphibious spherical robots. 
 

Index Terms – Kernelized Correlation Filtering. RGB-D 
Tracker. ToF Camera. Amphibious Spherical Robot. Visual Track-
ing. 
 

I.  INTRODUCTION 

As a fundamental function of robotic vision system, visual 
tracking is critical important for mobile robots to realize intel-
ligent functions such as multi-robot cooperation and autono-
mous navigation. Benefiting from the progresses in the pattern 
recognition theory and the image processing technology, nu-
merous excellent tracking algorithms, such as TLD (Tracking-
Learning-Detection) [1], STUCK (Structured output tracking 
with kernels) [2], Staple [3] have been proposed in recent years 
[4]. However, it still remains a very challenge work to handle 
disturbances like scale changes, illumination variations, and 
partial occlusion for these color-only trackers [5]. Compared 
with theoretical studies conducted on high performance com-
puters, designing a practical visual tracking system for small-
sized amphibious robots is an even more difficult work. On the 
one hand, common problems of visual tracking such as illumi-
nation variations and partial occlusions shall be especially con-
sidered in the amphibious environments. On the other hand, the 
carrying capacity and the information processing ability of an 
amphibious robot is usually very limited. Thus, the real-time 

performance of the system shall also be taken into considera-
tions. 

The emerging technology of RGB-D cameras provide an 
alternative solution to realizing robust visual tracking [6]. As a 
supplement to the color images, the depth images provide the 
position information of the object which may facilitate the 
tracking process. In 2013, Song et al. [7] proposed a baseline 
RGB-D tracker and release a unified benchmark captured with 
a Microsoft Kinect. Combing with detector built upon SVM 
(Support Vector Machine), the optical flow algorithm was 
adopted to track the object. In 2015, Awwad et al. [8] proposed 
a local depth pattern for tracking in depth videos, which was 
proved to be very effective in RGB-D tracking [9]. In 2015, 
Hannuna et al. [10] proposed a RGB-D tracker on the basis of 
the real-time KCF (Kernelized Correlation Filtering) tracker. 
The problems of scale changes and partial occlusions were han-
dled using the method of image segmentation. But as far as we 
know, there were no relevant applications on small-sized am-
phibious robots. 

To execute vision-based tasks of our amphibious spherical 
robot, a RGB-D visual tracking system was designed and im-
plemented. A Softkinetic ToF (Time-of-Flight) camera was cal-
ibrated in the amphibious environments and was then used to 
perceive the surroundings of the robot. A RGB-D tracker, 
which tracked the target object using the HoG (Histograms of 
Oriented Gradients) and CN (Color Name) features in the color 
images, was built upon the KCF tracker. The scale and position 
models of the object was established using the Gaussian model 
and the depth histogram of the object. The occlusion event was 
recognized by segmenting the depth image and using an empir-
ical formula. The online update process of the KCF tracker was 
temporarily stopped once an occlusion event was detected. In 
the experimental section, the Princeton benchmark and the 
RGB-D images captured from the robotic platform was adopted 
to verify the validation of the tracker. Test results demonstrated 
the effectiveness and robustness of the proposed tracking algo-
rithm, which can meet practical application requirements of the 
amphibious spherical robots. 

The rest of this paper is organized as follows. An overview 
on our amphibious spherical robots and the RGB-D camera will 
be introduced in Section II. The global structure of the proposed 



RGB-D tracker will be elaborated in Section III. The anti-oc-
clusion method of the RGB-D tracker will be described in Sec-
tion IV. Experimental results conducted on the computer and 
the robot platform will be provided in Section V. And Section 
VI will be conclusions and follow-up relevant research work. 

II.  RELATED WORK AND APPLICATION REQUIREMENT 

A. Amphibious Spherical Robot 

 
    (a) Land mode                          (b) Underwater Mode 

Fig. 1 Diagram of the improved amphibious spherical robot 

In 2012, our research team proposed a novel amphibious 
spherical robot for precise and stealthy applications in littoral 
regions [11]. As shown in Fig. 1, the upper hemisphere was a 
waterproof cabin, in which the electronic devices and the sen-
sors were installed. Four hybrid driving units or legs were sym-
metrically installed inside the lower hemisphere which con-
sisted of two openable quarter-sphere shells [12]. In the terres-
trial environment, the robot crawled with the four legs. In the 
underwater environment, it swam with water jets which were 
fixed to the legs. Unlike most existing amphibious spherical ro-
bots which moved by rolling, the robot was able to work in 
complex environments like coral reefs and pipelines [13]. 

In 2016, a latest version of the amphibious spherical robot 
with a larger diameter of 350 mm was designed and fabricated. 
As shown in Fig. 2, on the basis of the prototype robot, various 
sensors, including a global positioning system (GPS) module, a 
depth gauge, a micro-electromechanical system (MEMS) iner-
tial measurement unit (IMU), an industrial camera, and a ToF 
camera, were added to sense the status of the robot and the sur-
roundings. Considering that the load space of the robot was nar-
row and enclosed, the information processing system of the ro-
bot was fabricated using a Xilinx Zynq-7000 SoC (XC7Z020) 
and a Raspberry Pi 3 to reduce the power consumption and the 
heat generation [14]. On this basis, robotic visual algorithms 
including mixture Gaussian model-based foreground detection 
and compressive tracking were implemented on the embedded 
system. And a SoC-based heterogeneous computing architec-
ture was designed to speed up image processing. 

Due to the characteristics of the robot and the special ap-
plication environments, designing a practical tracking system 
for the amphibious spherical robot remains a very challenge 
work. First, the adopted tracking algorithm should be robust to 
common disturbing factors like partial occlusions because the 
mobile robot would work under diverse amphibious scenarios 
[15]. Second, the real-time performance and the tracking accu-
racy of the system should be acceptable to meet the require-
ments of robotic applications [16]. Third, the problems of color 
distortion, under-exposure and fuzz, which are caused by light 

absorption and scattering in underwater environments, should 
be taken into account in the underwater tracking applications 
[17]. 

 
Fig. 2 Diagram of the electronic system of the amphibious spherical robot 

B. RGB-D Camera and Calibration 
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(a) Waterproof cover for the Softkinetic DS525 ToF camera 
 

 
(b) Picture of the RGB-D imaging system for the robot 

 
(c) Picture of the Calibration experiment 

Fig. 3 Calibration experiment for the Softkinetic DS525 ToF camera 

In recent years, the increasing low cost RGB-D cameras 
provided a novel solution to designing a robust tracking system 
for small-sized amphibious robots [6]. In addition to the con-
ventional visual RGB information, the RGB-D cameras provide 
the complementary depth information of objects in the view 
field which could be used to boost the visual tracker [9]. In com-
parison with RGB-D cameras using structured light, the ToF 



cameras acquired the three dimensional data by measuring the 
phase difference in the reflected light. Thus, a TOF camera was 
relatively robust to interference from ambient light, it has ap-
plication potential in 3D reconstruction in outdoor and under-
water environments [18]. Moreover, there is a local minimum 
in the optical absorption of water around the wavelength of 
800 nm, and the working length of the Softkinetic ToF camera 
is 825 nm, making it suitable for underwater applications 
[19]. As shown in Fig. 3 (a) and (b), a Softkinetic DS525 RGB-
D camera, which captures the 720p color images and 320×240 
depth image at 25–60 frames per second (fps), was adopted as 
the detection equipment of the amphibious spherical robot. A 
customized waterproof cover was machined using the 3D print-
ing technology, and three pieces of optical glasses were fixed 
in front of the camera lens and the laser emitter. Given that the 
parameters of the light path have been changed, a calibration 
experiment was conducted as shown in Fig. 3 (b). The ToF cam-
era was fixed on a sliding bracket, and a lusterless slab was 
served as a target to be imaged. The distance between the cam-
era and the target was adjusted according to a ruler and was then 
compared with the measured value in the depth image.  

 
(a) Test results in the terrestrial environment 

 
(b) Test results in the underwater environment 

Fig. 4 Calibration results of the Softkinetic DS525 ToF camera 

As shown in Fig. 4, the ToF camera could work normally 
at the range of 100–1000 mm and 100–550 mm in the terrestrial 
and underwater environment, respectively. Because the water 

absorbs the near infrared laser emitted by the camera, the effec-
tive working range of the depth sensor was shorten in the un-
derwater environment. The response of the depth camera was 
appropriate linear, and the captured depth image should be cal-
ibrated according to the test results. 

III.  KCF-BASED RGB-D TRACKER 

A. Kernelized Correlation Filtering Tracking 
Considering the practical application requirements of the 

amphibious spherical robot, it is essential to make a compro-
mise between the processing precision and the real-time perfor-
mance when designing the robotic vision system. Recently, a 
lot of real-time tracking algorithms such as Staple [3], L1-
tracker [4], and FCT [20] have been successively proposed. 
However, the robustness and long-term tracking performance 
of these famous algorithms were not so ideal due to drift prob-
able [21]. In 2015, Henriques et. al [22] proposed the KCF al-
gorithm which had high tracking precision and excellent real-
time performance, laying the foundation on designing a RGB-
D tracker for robotic applications. As shown in Fig. 5, the algo-
rithm flows of KCF included three phases: training, detection, 
and updating. 

 
Fig. 5 Diagram of the KCF- tracker 

KCF realized the process of tracking-by-detection using 
the rigid regression, in which a function T( )f x w x  was tried 
to found that minimized the squared error over samples xi and 
the corresponding regression target yi: 

22min ( ( ) )i i
i

f y  
w

x w ,    (1) 

where λ is the regularization parameter. The solution of this op-
timization problem was: 

T 1 T( )  w X X I X y ,    (2) 
where X is a data matrix which contains all the samples. As to 
the tracking application, xi represents the HoG feature vector of 
an image patch or a context sample, and yi represents the degree 
of similarity between xi and the target. 

KCF accelerates the calculation process of w by utilizing 
the properties of circulant matrices. In the training phase, a n×n 
circulant matrix X was constructed on the basis of the n×1 tar-
get feature vector x using a cyclic shift operator: 
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Then the equation (2) could be reformulated as: 
*
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where   represents the element-wise multiplication, and ( )  
the Fourier transformation. Thus, the solving process of w could 
be efficiently realized using the fast Fourier transformation 
(FFT). And the computational complexity equals to O(nlogn). 
KCF is a state-of-the-art high-speed tracking algorithm which 
successfully combines the characteristics of spatial domain and 
frequency domain. Several relevant improved algorithms have 
been proposed by combining multiple image features [23], de-
signing part-based tracking mechanism [24], and adding a scale 
estimator [25]. 

B. Structure of KCF-based RGB-D Tracker 
KCF is robust to interference factors such as background 

cluttering and pose changes. However, it is not capable of cop-
ing with scale changes and occlusions. It is a feasible solution 
to enhance the robustness of the KCF tracker by utilizing the 
depth data of the target without losing the real-time ability. The 
proposed RGB-D tracking algorithm was as shown in Fig. 6. 
The RGB images were input into an improved KCF tracker to 
realize conventional visual tracking. And the depth images were 
segmented to acquire the contour of the target and the average 
distance between the target and the camera which would be 
used for occlusion detection and scale estimation. A particle fil-
ter based on sequential importance sampling was adopted to 
predict the position of the target and to sample image patches 
to be detected [26], which would improve the adaptability of 
the tracker to fast moving targets. 

 
Fig. 6 Diagram of the KCF-based RGB-D tracker 

On the basis of the original KCF tracker, two aspects of 
improvement were made to further increase the tracking preci-
sion. First, considering that the HoG feature only describe the 
texture of the target object, the CN feature was extracted to de-
scribe the color distribution using the same cell size as the HoG 
feature. These two feature vectored were simply combined to 
construct xi: 

,HoG ,CN{ ; }i i ix x x .    (5) 

Second, the original KCF tracker adopts a static updating mech-
anism, which may lead to the drift problem when the current 
tracking result is not so ideal. So an adaptive updating mecha-
nism was adopted in the improved tracker for the better long-
term tracking performance. The quality of the tracking result at 
the i th frame was described as [24]: 
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where ˆ
if  represents the confidence map at the i th frame, i  

and i  the mean value and the standard deviation of ˆ
if ,   the 

two dimensional shift operation of a matrix, and   the shift of 
maximum value in confidence maps from the (i–1) th frame to 
the i frame. PSRi described the confidence level of the detection 
result, and SCCMi described the continuity of the target trajec-
tory. Once the value of wi was lower than the predefined thresh-
old value, the tracker would stop updating to avoid polluting the 
parameters of the kenerlized correlation filter. 

IV.  ANTI-OCCLUSION AND SCALE ESTIMATION MECHANISM 

A. Depth Segmentation 

 
(a) Segmentation results of 230th frame of zcup_move_1 

 
(b) Segmentation results of 300th frame of zcup_move_1 

Fig. 7 Picture of the depth segmentation 

The anti-occlusion and scale estimation mechanisms were 
designed on the assumptions that the position and the scale of 
the target change slowly and continuously. Because the RGB-
D camera captured RGB and depth images at 30 fps, the as-
sumptions should hold in most scenarios. 

The process of depth segmentation is as follows. First, the 
histogram of the context region in the depth image was calcu-
lated. Second, the information entropy of the depth histogram 
was calculated to describe the richness of the details: 

1

log
L

i i
i

H h h


 ,     (9) 

where hi represents an element of the depth histogram. Third, 
the depth histogram was clustered using the Meanshift algo-
rithm, the bandwidth of which was set to be proportional to the 
information entropy. Fourth, the clustering results of the depth 
histogram was mapped to the context region. If there is no oc-
clusion occurring, the target shall be in the foreground and have 
the minimum depth value on average. As shown in Fig. 7, the 
fraction of the target region inner the context region could be 
determined. 



B. Anti-occlusion and Scale Estimation Mechanisms 
On the basis of depth segmentation, the occlusion event 

could be detected by analyzing the depth distribution of the con-
text region. The occlusion event was thought to have taken 
place if 
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where target(Area )i  represents the average depth value of the 

target at the i th frame, and 1i   the standard deviation of the 
depth value at the (i–1) th frame. The average depth value of 
target was modeled using a Gaussian model, the parameter of 
which was updated online. Once the average depth value sud-
denly changed, and the tracking result of the RGB KCF tracker 
deteriorated, the occlusion event was tend to happen. Then, the 
KCF tracker would stop updating parameters and try to redetect 
the target near the occluding object. 

As to the scale estimation mechanism, the contour of the 
target object was located after the depth segmentation opera-
tion. To avoid instability of the tracker, the scale value of the 
object was adjusted with a small step value of 0.05. And the 
adjustment range was from 0.5 to 2.0. The adjusted scale value 

was adopted only when the values of wi and ˆmax( )if  were rel-

atively high. 

V.  EXPERIMENTAL RESULTS 

A. Experiments with Benchmark Sequences 

 
(a) Test results of bear_front 

 
(b) Test results of face_occ5 

 

 
(c) Test results of new_ex_occ4 

 
(d) Test results of zcup_move_1 

Fig. 8 Evaluation results of the RGB-D benchmark sequences 

To verify the validation of the proposed RGB-D tracker, 
two phases of experiments were conducted. In the benchmark 
experiment phase, four RGB-D image sequences (bear_front, 
face_occ5, new_ex_occ4, and zcup_move_1) of Princeton 
Tracking Benchmark [7] were adopted. Fig. 8 shows the test 
results. TABLE I shows the quantitative evaluation results of 

the benchmark experiment. The results indicated that the ro-
bustness to drift, occlusion and background clutter of the pro-
posed algorithm was reinforced by adopting the scale estima-
tion and the occlusion detection mechanisms. As shown in Fig. 
8 (a), (b) and (c), the proposed tracker was capable of precisely 
tracking the target object, while the KCF tracker and the CT 
tracker lost the target when the occlusion event occurred. But 
the proposed tracker could recover the tracking process using 
the adaptive updating and redetection mechanism. As shown in 
Fig. 8 (d), the proposed tracker was able to segment the target 
region using the depth information and then adjust the scale 
value. The tracking precision was improved using the scale es-
timation mechanism. In comparison, the CT tracker and the 
KCF tracker, which are not capable of adapting scale changes, 
could only provide the relative low tracking precision and high 
center errors. 

TABLE I 
SUCCESS RATE AND CENTRE LOCATION ERROR OF THE PROPOSED ALGORITHM 

Sequences 
Proposed CT KCF  

Frames 
SR CLE SR CLE SR CLE 

bear_front 83.1 12.4 16.6 149 20.4 192 281 
face_occ5 99.1 4.7 52.2 65.5 99.1 4.7 330 

new_ex_occ4 86.7 17.1 56.3 88.7 54.2 94.2 51 
zcup_move_1 90.7 5.6 82.7 13.9 82.7 6.3 370 

terrestrial 94.2 8.7 25.8 36.2 62.3 28.8 178 
underwater 84.5 10.2 28.1 57.9 76.1 17.9 121 

B. Robotic Experiments 

 
(a) Test results in the terrestrial environment 

 
(b) Test results in the underwater environment 

Fig. 9 Evaluation results on the amphibious spherical robot 

In the robotic experiment section, the water repellent ToF 
was installed at the amphibious spherical robot. A small car and 
a submarine model were adopted as the target object in the ter-
ritorial and underwater environment, respectively. Fig. 9 shows 
the test results and TABLE I provided the quantitative evalua-
tion results. The test results indicated that the proposed tracking 
system was capable of processing moving target in the amphib-
ious environment. In the terrestrial environment, the target (a 
small car) was occluded by a shelter with the similar color, 
which resulted in the drift problem when adopting the CT and 
KCF tracker. In the underwater environment, the tracking pro-
cess towards the target (a submarine model) was even more 
challenge due to the interference factors of the pose changes 
and the inverted reflection in water. But the proposed tracking 
system successfully neglected these disturbances and provided 
the precise trajectory of the submarine model. 

VI.  CONCLUSIONS AND FUTURE WORKS 

Aiming at autonomous exploration and navigation tasks of 
the amphibious spherical robot, a RGB-D tracking system was 



designed and implemented in this paper. A ToF camera was 
adopted and calibrated to perceive the surroundings of the ro-
bot. A RGB-D tracker was built on the basis of the improved 
KCF tracker which adopted the HoG-CN features and an adap-
tive updating mechanism. The depth images was segmented to 
realize occlusion detection and scale adjustment. Experimental 
results with various image sequences demonstrated the robust-
ness of the proposed tracking system to environmental disturb-
ances such as occlusions and scale changes, which can meet 
practical application requirements of the amphibious spherical 
robots. 

The RGB-D tracking system also have some drawbacks. 
The proposed tracking algorithm was currently implemented 
using MATLAB R2014a. The average frame rate was only 
2.6 fps, which was not suitable for real-time robotic applica-
tions. We will try to rewrite the algorithm using C/C++ and op-
timize the code using the heterogeneous computing technology 
to ensure the real-time performance. Moreover, a more delicate 
occlusion detection mechanism is also necessary to further im-
prove the long-term tracking performance of the algorithm. 
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