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Abstract –In this paper, to deal with the performance of the 
medical microrobot in fluid condition, we proposed a novel type 
of magnetically actuated hybrid microrobot. The magnetically 
actuated hybrid microrobot has characteristics of controllability 
and multi-function. It has a simple structure, a simple control 
strategy with a rotational magnetic field and good dynamic in 
fluid.  The magnetically actuated hybrid microrobot is composed 
of microrobot body with a screw jet motion, microrobot leg with 
paddling motion and microrobot tail with fin motion. We 
designed a rotational magnetic field and an alternate magnetic 
field to realize the screw jet motion, paddling motion and fin 
motion. We carried out the evaluating experiments for screw jet 
motion and moving motion in a pipe. The experimental results 
indicated that the magnetically actuated hybrid microrobot has a 
good performance on flexibility. 
 Index Terms – Magnetically actuated hybrid microrobot; 
Screw jet motion; Paddling motion; Fin motion; Rotational 
magnetic field; Alternate magnetic field. 
 

I.  INTRODUCTION 

Magnetically actuated microrobot is used widely in the 
medical applications, which is as a kind of diagnostic tool [1]-
[10]. The magnetically actuated microrobots are safe reliable 
and can carry deeply to some narrow areas within the tissue of 
living in the human body, such as small intestine. And they 
have many potential applications in the field of medical 
engineering. For example, they may be used for microsurgery 
in blood vessels, which is expected to become an increasingly 
widely adopted medical procedure in the near future. With 
advances in precision processing technology, several types of 
magnetically actuated microrobots have been developed for 
various applications and further progress in this field [11-13]. 
Meanwhile, different kinds of control strategy is used to drive 
the magnetically microrobots [14-17]. For example, the 
permanent magnet as an actuator is fitted inside the 
magnetically microrobot. The electromagnetic coils as an 
actuator is fitted inside the magnetically microrobot.  

Compared with the traditional medical microrobot which 
move by peristalsis [18], the magnetically microrobot solved 
the problem – the magnetically microrobot has the flexible 
motion and can arrive at the target to finish some functions. In 
other word, we can control the orientation and position of the 
microrobot in medical application.  

Guo et al. developed many magnetically microrobot 
which control by electromagnetic actuation (EMA) system 
[19-24], as shown in Fig. 1. They can use the basic motion 
(e.g. forward motion, backward motion, stop motion) to move 
the target in pipe. The fish-like microrobot inspired by the 
movement of the fish is controlled by a MTX sensor in natural 
frequency. Meanwhile, other researchers developed different 
kinds of magnetically microrobot. B. J. Nelson developed an 
EMA system which consists of Helmholtz and Maxwell coils. 
The microrobot has a flexible motion in the EMA system 
[25]. However, movement of the microrobots is limited due to 
their structure. In this paper, we proposed a magnetically 
actuated hybrid microrobot. Hybrid motion can be controlled 
separated without any interference, due to our proposed screw 
jet structure. We can change its motions to realize multi-
DOFs movement and flexibility motion in the pipe.  

This paper is organized as follows. Firstly, we introduce 
the electromagnetic actuation system. Secondly, we proposed 
a conceptual design of a magnetically actuated hybrid 
microrobot. And then, we built a propulsive force model for 
the hybrid microrobot and explain its movement mechanism. 
Thirdly, based on the propulsive model, we evaluated the 
performance with different parameters. The final part of the 
paper presents our conclusions. 

II. ELECTROMAGNETIC ACTUATION SYSTEM 

A. Electromagnetic actuation system 

Our group developed various electromagnetic actuation 
systems in  the past  decade [26-28]. It is  used to  control  the  



 

 
Fig. 1 Electromagnetic actuation system (EMA system) 

 

(a)Hybrid microrobot with leg close 

 

(b) Hybrid microrobot with leg open 

Fig. 2 Conceptual design of the magnetically actuated hybrid microrobot with 
screw jet motion, paddling motion and fin motion 

robot, the magnet as an actuator inside the robot body. One of 
the electromagnetic actuation systems is shown in the Fig.1. 
The type of magnetic microrobot is controlled by an external 
coils or magnet, which is used to generated the magnetic force 
and magnetic torque in the work space. While watching the 
display to obtain the information, such as the position of the 
microrobot and posture of the microrobot in the GI tract, the 
operator operate the microrobot to move to the target and 
realize the function, such as, drug delivery, endoscope, and so 
on. 

B. Magnetic force and magnetic torque 

While a magnet inside an external magnetic field, the 
magnetic torque is provide by the magnetic field. Due to the 
magnetic torque, the magnetically microrobot can obtain the 
rotational  motion and alternate  motion.  In our  research,  the  

 

(a) Rotational motion 

  

(b) Alternate motion 

Fig.3 Principle of rotational motion and alternate motion 

3axes Helmholtz coils is used to generate the magnetic field, 
the magnetic torque is given by the equation (1): 

VMT B                                     (1) 

where, V is the volume of the magnet, M is the magnetization 
of the magnet.  

III. CONCEPTUAL DESIGN OF MAGNETICALLY ACTUATED 

HYBRID MICROROBOT 

A. Magnetically actuated hybrid microrobot 

Various magnetically actuated microrobots have been 
developed. They hold some advantages, such as flexible 
motion, small size and so on. It is important how to arrive the 
target and realized multi-motions, not simplex motion. 
According to these previous researches, we proposed a 
magnetically actuated microrobot with hybrid motion, screw 
jet motion, paddling motion and fin motion, as shown in Fig.        
2. The hybrid microrobot composed of three parts, microrobot 
body, microrobot tail and microrobot leg. The microrobot 
body has a screw jet motion to realize the basic motion, 
forward motion and backward motion [26-28]. In previous 



research, we realized the rotational motion by changing the 
rotational direction of the magnetic field. For example, the 
magnetically microrobot move forwardly/backwardly with the 
rotational direction of the magnetic field is clockwise/counter-
clockwise, as show in Fig. 3 (a). Fig.3 (b) shows the principle 
of alternate motion according to changing the alternate 
magnetic field. 

B. Propulsive force model 
Fig. 4 shows the propulsive force model of screw jet 

motion. While the magnetically microrobot moves inside the 
liquid, the liquid pass the microrobot from one end of the 
microrobot to other end of the microrobot at the same time. 
Based on the hydrodynamics, the liquid volume of the inflow 
area is equal to liquid volume of the outflow area for unit time 
given by equations (2), (3) and (4): 
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where, Q is liquid volume at unit time, V1 is the inflow 
velocity of the area A1. V2 is the outflow velocity of the area 
A2. Fp is the propulsive force. ρ is the density of liquid. ω is 
the angle of the angular speed of the microrobot 

IV. IMULATION AND EXPERIMENTAL RESULTS 

According to the discussion of the session III, two kind of 
screw grooves (cylindrical screw groove and a rectangular 
screw groove) with different parameters ,as shown in Table I, 
are evaluated the performance of the magnetically with screw 
jet motion. In this paper, we assumed the dimensions to be 

outer diameter = 13 mm and the inner diameter= 11 mm for 
the inner radius, respectively. The size of the screw and the 
length of the body is the same.  

Fig. 5 shows the compared results between the cylindrical 
screw groove and a rectangular screw groove. From the 
simulation results, we can know that the rectangular screw 
groove type microrobot generated a larger propulsive force 
than the cylindrical screw groove type microrobot at the same 
rotational speed. The relationship between the rotational 
speed and the height of the screw groove with different width 
of the screw groove is shown in Fig. 6 and Fig. 7. If the 
microrobot generated a propulsive force Fp = 9 mN, the pitch 
of the microrobot is 5, the microrobot with w=2.0mm needs a 
lower rotational speed than the microrobot with w=1.0. Also 
the microrobot with h=2.0mm needs a lower rotational speed 
than the microrobot with h= 1.0 in order to generate the same 
propulsive force. Fig. 7 shows the simulation results of the 
microrobot generates the propulsive force is 10 mN with 
different parameters.  

 

Fig. 4 Propulsive force model 

 
Table I Simulation parameters of the cylindrical screw 

groove and a rectangular screw groove 

 
Cylindrical 
groove 

Rectangular 
groove 

Outer diameter 13mm 13mm 

Inner diameter 11mm 11mm 

Pitch 5 5 

Length 30 mm 30 mm 

h 2mm 2mm 

w 4mm 4mm 

 



We used our proposed electromagnetic actuation system 
to realize the basic motion. In this experiment, a controller is 
used to control the signal for proving the 3 axes Helmholtz 
coils, and using our proposed user interface to control the 
direction of the microrobot in the pipe. Fig. 8 shows the 
experimental result, which is moving the 45o with the X axis. 
By adjusting the magnetic changing frequency, the 
microrobot realized the speed variation. 

V. CONCLUSIONS 

 In this paper, we proposed a conceptual design of the 
magnetically actuated hybrid microrobot. The magnetically 
actuated hybrid microrobot is driven by a electromagnetic 
actuation system, which generates a rotational magnetic field 
and alternate magnetic field. We made and evaluated the 
performance of the screw jet motion to optimize the 
performance. Based on the propulsive model, we compared 
the performance with different parameters, for example, 
different width of the screw groove and height of the screw 
groove in the same diameters of the microrobot, pitch and 
length of the microrobot. The experimental results indicated 
that the microrobot realized the flexible motion in the pipe, by 
adjusting the changing magnetic frequency. In the future, we 

evaluate the performance of magnetically actuated microrobot  
with different parameters. 
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