
Research Article

A system on chip-based real-time tracking
system for amphibious spherical robots

Shuxiang Guo, Shaowu Pan, Xiaoqiong Li, Liwei Shi,
Pengyi Zhang, Ping Guo and Yanlin He

Abstract
Aiming at vision applications of our amphibious spherical robot, a real-time detection and tracking system adopting
Gaussian background model and compressive tracking algorithm was designed and implemented in this article. Consid-
ering the narrow load space, the limited power resource and the specialized application scenarios of the robot, a het-
erogeneous computing architecture combining advanced Reduced Instruction-Set Computer (RISC) machine and field
programmable gate array was proposed on the basis of Zynq-7000 system on chip.Under the architecture, main parts of
the vision algorithms were implemented as software programs running on the advanced RISC machine-Linux subsystem.
And customized image accelerators were deployed on the field programmable gate array subsystem to speed up the time-
consuming processes of visual algorithms. Moreover, dynamic reconfiguration was used to switch accelerators online for
reducing resource consumption and improving system adaptability. The word length of accelerators was optimized with
simulated annealing algorithm to make a compromise between calculation accuracy and resource consumption.
Experimental results confirmed the feasibility of the proposed architecture. The single board tracking system was able to
provide an image processing rate of up to 89.2 frames per second at the resolution of 320� 240, which could meet future
demands of our robot in biological monitoring and multi-target tracking.

Keywords
System on chip (SoC), detection and tracking system, heterogeneous computing, amphibious spherical robot

Date received: 12 July 2016; accepted: 1 June 2017

Topic: Vision Systems
Topic Editor: Antonio Fernández-Caballero
Associate Editor: Antonios Gasteratos

Introduction

Visual tracking is an active research topic in the field of

computer vision with robotic applications ranging from

visual servoing, automatic navigation and robot–human

interaction. Given the initial state (e.g., position and scale)

of a specific target in the first frame of a video or an image

sequence, a visual tracker seeks to estimate the states of the

target in the subsequent frames. Some state-of-the-art

tracking algorithms including tracking–learning–detection

(TLD),1 multiple instance learning (MIL),2 structured out-

put tracking with kernels (STUCK)3 and L1 tracker using

accelerated proximal gradient (L1APG)4 have been pro-

posed in recent years. Although numerous tracking

algorithms have been proposed,5 it still remains a very

challenging task to design a low-power real-time tracking

system for mobile robotic applications.6–8 On the one hand,

most embedded processors for mobile robotic applications

Key Laboratory of Convergence Medical Engineering System and

Healthcare Technology, the Ministry of Industry and Information

Technology, School of Life Science, Beijing Institute of Technology,

Beijing, People’s Republic of China

Corresponding author:

Liwei Shi, Beijing Institute of Technology, No.5, Zhongguancun South

Street, Haidian District, Beijing 100081, People’s Republic of China.

Email: shiliwei@bit.edu.cn

International Journal of Advanced
Robotic Systems

July-August 2017: 1–19
ª The Author(s) 2017

DOI: 10.1177/1729881417716559
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:shiliwei@bit.edu.cn
https://doi.org/10.1177/1729881417716559
http://journals.sagepub.com/home/arx

have a relatively weaker computational ability compared

with multicore central processing unit (CPU) in worksta-

tions, which leads to difficulties for real-time image pro-

cessing. On the other hand, visual tracking algorithms have

to process images successively, which covers processes of

image preprocessing, appearance modelling, motion esti-

mating, target locating and model updating.5 Consequently,

it results in a great number of compute-extensive

operations.

Aiming at exploration tasks in littoral regions, a small-

scale amphibious spherical robot was proposed by our team

in 2012.9 Given the characteristics of the robot and the

amphibious environments, a camera is important for it in

executing observation and investigation tasks autono-

mously.10,11 Focusing on vision applications of our amphi-

bious spherical robot, a low-power real-time detection and

tracking system was designed and implemented in this arti-

cle. Gaussian background model was adopted to detect

moving target entering the field of view. Then, compres-

sive tracking (CT) algorithm was used to track the detected

target successively.6 Given the limited load space and

potential application functions of the robot, a novel archi-

tecture of heterogeneous computing systems combining

advanced Reduced Instruction-Set Computer (RISC)

machine (ARM) and field programmable gate array

(FPGA) was proposed on the basis of Xilinx Zynq-7000

SoC (system on chip) to implement the detection and track-

ing system. Under the proposed architecture, the main part

of vision algorithms was running on the ARM-Linux

embedded subsystem as software. And customized image

accelerators designed with high-level synthesis (HLS) tools

were deployed on the FPGA subsystem to speed up

compute-intensive processes of vision algorithms. More-

over, dynamic reconfiguration was used to switch accel-

erators running on the programmable logic (PL), which

reduced consumption of FPGA resources and provided an

extendable acceleration mechanism for embedded image

processing. Besides, the word length of image accelerators

was optimized with simulated annealing algorithm to make

a compromise between numerical calculation accuracy and

resource consumption of the PL. Various experiments were

conducted to verify the validation of the proposed hetero-

geneous architecture and the practicality of the tracking

system. Test results indicated that the system was able to

provide a detection rate of up to 88.3 frames per second (fps)

and a tracking rate of up to 89.2 fps at the resolution of 320

� 240, which could meet the application requirements of our

robot. Its good real-time performance could also meet future

demands of the robot in biological monitoring and multi-

robot collaboration.

The rest of the article is organized as follows. An over-

view on our amphibious spherical robot and existing low-

power real-time visual tracking solutions is provided in the

section ‘Related works and application requirements’. CT

algorithm is analysed and evaluated in the section ‘Analy-

sis and evaluation on compressive tracking algorithm’.

Design details of the proposed detection and tracking sys-

tem are elaborated in the section ‘Zynq-7000 SoC-based

low-power real-time tracking system’. Optimization design

of the system including word length optimization and dyna-

mical reconfiguration is described in the section ‘Optimi-

zation design of the proposed visual tracking system’.

Experiments and evaluations on the proposed system are

conducted in the section ‘Experimental results and discus-

sions’. Section ‘Conclusions’ describes conclusions and

follow-up research works. An appendix with the principles

of the CT algorithm and the Gaussian background model is

also included.

Related works and application
requirements

Amphibious spherical robots

As shown in Figure 1, the amphibious spherical robot con-

sisted of a waterproof hemispheric upper hull (diameter:

250 mm), in which electronic devices and scientific instru-

ments were installed, and two openable quarter-sphere

lower shells (diameter: 266 mm). In the land mode, the

robot walked with four legs. In the underwater mode, it

Figure 1. Diagram of the amphibious spherical robot.

2 International Journal of Advanced Robotic Systems

swam with water jets. In 2014, an improved version of the

amphibious spherical robot was proposed using 3D printing

technology and adding sensors including gyroscopes,

accelerometer, global position system and cameras.12 Dif-

ferent from most existing mobile robots or autonomous

underwater vehicles, the robot was able to work in complex

and narrow environments like coral reefs and pipelines.13,14

Due to the unique mechanical structure and the specia-

lized application scenarios, designing a tracking system for

our amphibious spherical robot was a challenging task.

First, the load space of the robot was very narrow and was

designed as enclosed for waterproofing. Thus, a high-speed

computer or workstation, which is usually in large size and

generates a great deal of heat, was not suitable for this

small-scale mobile robot. Second, the robot was powered

by lithium batteries, the total capacity of which was 4800

mAh. So the power consumption of its robotic vision sys-

tem shall be considered to ensure enough work range.

Third, future applications of the robot include biological

monitoring and multi-robot collaboration. The robotic

vision system may need to track multiple targets or a

high-speed target like fish. Therefore, the real-time per-

formance of the tracking system shall be especially

considered. Besides, precision and effectiveness of the

adopted tracking algorithm should be acceptable to meet

the requirements of robotic applications like visual ser-

voing. To address issues mentioned above, a low-power

real-time tracking system build upon embedded proces-

sors was essential for applications of our amphibious

spherical robot.

In 2015, a prototype moving target detection system was

constructed for the robot using an SoC.12 The Gaussian

background model was used for foreground detection and

a customized accelerator was designed to ensure real-time

image processing. However, the framework of the proto-

type system was coarse and inefficient, which resulted in a

high CPU workload and a slow response speed of the

robotic control system. Besides, the adopted power optimi-

zation methods were not effective enough, which limited its

applications in practical scenarios.

Low-power real-time visual tracking systems

To overcome the high-computing load problem, the main-

stream solution of real-time visual tracking systems is

implementing algorithms with graphic processor units

(GPUs),15 digital signal processors (DSPs),16 FPGAs17 or

application-specific integrated circuits (ASICs).18 How-

ever, tracking systems built upon a single specific purpose

processor or PL device have drawbacks in real-time per-

formance, developing difficulties, cost and extendability,

respectively. That limited their applications in battery-

powered or multiple functional platforms like autonomous

mobile robots.

Hybrid or heterogeneous systems integrated advantages

of multiple solutions and have been widely used in real-

time vision applications in recent years. In general, CPU–

GPU is the most popular hybrid solution in the field of

computer vision for its excellent performance.19 However,

most CPU–GPU heterogeneous systems are fabricated as

computers or workstations, which have high power con-

sumption and are not suitable for small-scale mobile robots.

Moreover, programs of vision algorithm shall be carefully

optimized to use CPU and GPU simultaneously for a high

utilization rate. Besides, the program portability problem

between some types of NVIDIA GPUs still exists.

Another widely used hybrid solution for visual tracking

is DSP–FPGA which attaches customized hardware (i.e.,

FPGA) to an easy-to-develop processor (i.e., DSP). Tomasi

et al.20 designed a sparse optical flow-based smart video

sensor using FPGA and DSP co-processing architecture.

Harris corner detection algorithm was implemented on the

FPGA, and the DSP tracked the target using features

detected by the FPGA. An overall frame rate of 160 fps

for 640 � 480 resolution was finally achieved on this

hybrid system. Wang et al.21 designed a correlation track-

ing system using Texas Instruments TMS320DM642 DSP

and Xilinx Spartan-3E FPGA, and a frame rate of 25 Hz for

720 � 576 resolution was achieved. For a better multitask-

ing capability and software portability, heterogeneous com-

puting systems centred on general-purpose (GP)

processors, such as ARMs, were also used in some stud-

ies.22 In an ARM–DSP hybrid system, a DSP usually

served as the specified image accelerator, which executed

time-consuming image processing operations and lightened

the burden of an ARM processor.23 But most hybrid sys-

tems mentioned above used an external interface to connect

the two devices. A low-efficient and low-reliable interface

turned into the performance bottleneck of these systems,

which may cause low utilization rate of the accelerator and

poor real-time performance.19 Besides, reliability, power

consumption and size of these systems should also be con-

sidered in some application scenarios.

A hybrid system containing two processors on a

single chip, commonly known as SoC, has recently

become a booming trend in embedded systems for image

processing.24 Because a SoC combines a GP processor with

a PL device together seamlessly, it provides flexibility and

extendibility beyond conventional solutions. Zhou et al.25

proposed a novel inertial-assisted visual odometry system

intended for low-cost micro-aerial vehicles. A low-cost

Altera SoC FPGA with a 600 MHz ARM Cortex processor

inside was adopted as the system core. A features from

accelerated segment test (FAST) feature detector and a

binary robust independent elementary features (BRIEF)

descriptor were realized on the FPGA to assist real-time

tracking. Gao et al.26 proposed a real-time embedded video

target tracking system for real-world airborne video with a

Texas Instruments, US, OMAP 3730 ‘ARM þ DSP’

embedded processor. The DSP core was utilized as a

motion estimation preprocessing unit, and the ARM core

worked for further processing. Compared with

Guo et al. 3

dual-processor hybrid systems, SoC-based systems have

advantages of compact size, low-power consumption and

extendability. However, numerous configurations on low-

level hardware shall be dealt to launch these systems nor-

mally. And most customized accelerators running on FPGA

shall be developed with hardware description languages

(HDLs), which are not suitable for developing complex

numerical functions. These characteristics resulted in great

difficulties to deploy subtle visual algorithms. Consequently,

most state-of-the-art tracking algorithms were not implemen-

ted on embedded systems or used in practical applications yet.

In 2010, Xilinx Inc. launched an all-programmable SoC

named Zynq-7000. Unlike most existing SoC FPGA con-

taining dedicated processor hardware cores, Zynq is formed

around an application grade processing system (PS), which

consists of an ARM Cortex-A9 dual-core processor and

essential hardware peripherals for running full operating

systems such as Linux. The PL, which is equivalent to a

Xilinx 7-series FPGA, served as a programmable periph-

eral of the PS. The PS is able to multitask complex works,

and the PL is suitable to implement digital interfaces or

parallel arithmetic units.

Moreover, high-speed Advanced eXtendable Interface

(AXI) buses provide low latency data exchange channels

between the two sections, which makes it efficient to trans-

fer partially processed data inside the heterogeneous sys-

tem. AXI ports connecting the PS and the PL, including

four GP ports, four high-performance (HP) ports and an

accelerator coherency port (ACP), provide a data transfer

rate of up to 8 GBps. According to different characteristics

of these AXI ports, they can be used to connect different

instantiating intellectual property (IP) cores for various

applications. As shown in Figure 2, the PS usually accesses

configuration registers of peripherals on the PL through

AXI-GP ports in low-speed applications such as motor

control. AXI-HP ports are suitable for high-speed applica-

tions in which an IP core needs to access the double data

rate (DDR) random access memory (RAM), for example,

video stream processing or image acquisition. Because the

AXI-ACP port is able to access the DDR and supports

coherency with the CPU cache, it can be used for applica-

tions needing a shared work spaces between the software

and the hardware, such as interactive image processing.

Zynq combines advantages of ARM and FPGA and

overcomes the communication problem between the two

sections. Thus, it provides a feasible solution for control

and processing systems of small-scale autonomous mobile

robots.28 However, as far as we know, few studies were

made to fully tap its potential in robotic vision. Focusing on

the application problem of the amphibious spherical robot,

a Zynq-7000 SoC was used to construct the robotic tracking

system in this article. A sophisticated heterogeneous com-

puting system architecture, which took full advantages of

its characteristics, was proposed to ensure the real-time

performance of the vision system. Moreover, optimization

methods including dynamic reconfiguration and word

length optimization were designed to further reduce the

power consumption and to enhance the system flexibility.

Analysis and evaluation on CT algorithm

In 2012, Zhang et al.6 proposed the CT algorithm, which

provided a concise and efficient solution for real-time

visual tracking applications. The primary innovation of the

CT algorithm was the compressive sensing-based random

feature extraction method. Benefiting from this fast and

effective way to compress raw pixel data, the CT algorithm

succeeded in excellent real-time performance.29 Mean-

while, the online learning Naı̈ve Bayes classifier used for

separating the target from background, which is a simple

but effective pattern recognition method, ensured the track-

ing robustness to disturbances like appearance changes,

camera vibration, and so on.30 Because the CT algorithm

found a balance point between the real-time performance

and effectiveness, it has a bright future in low-power real-

time computer vision applications.

However, as far as we know, most CT-based tracking

systems were running on personal computers (PCs) or

workstations.31 Because the computational consumption

of the CT algorithm is still too large for most embedded

platforms, there were no related application cases of

mobile robots.

For an accurate evaluation towards the computational

consumption of the CT algorithm, we rewrote the program

on eclipse with C language using no dependent libraries

like OpenCV. The algorithm program ran on a PC (Intel

Core i7-4712MQ, 8 GB DDR3 RAM, Windows 7 64-bit)

and a Zynq embedded system (ARM Cortex-A9 Dual-core

667 MHz, 512 MB DDR3 RAM, Linux 3.2.16), respec-

tively. The time consumption data of the CT algorithm at

Figure 2. Diagram of Zynq-7000 SoC-based use cases.27 Red
arrow lines indicate data-path of AXI-GP ports. Green arrow lines
indicate data-path of AXI-HP ports. Purple arrow lines indicate
data-path of the AXI-ACP port.

4 International Journal of Advanced Robotic Systems

different resolutions was as shown in Table 1. Because the

CT algorithm adopted the random Haar-like feature model

and the dimension of feature vectors to be processed by the

classifier was static, the real-time performance of CT has

little relationship with the image resolution. Without pro-

gram optimization, the processes of integral image calcula-

tion, compressive sensing and Naı̈ve Bayesian classifier

cost 20.4%, 11.9% and 64.7% of the whole time when

running on the computer, respectively. The corresponding

percentages when running on the ARM were 17.8%, 18.2%
and 60.0%, respectively. The process of compressive sen-

sing contains a great amount of floating-point multiplica-

tion and add operations. The Naı̈ve Bayesian classifier

mainly involves exponent and logarithm operations, which

are equivalent to floating-point multiplication operations

according to Taylor series. The pure software solution on

ARM could only provide a processing rate of 6.0 fps on

average, which could not meet the requirements of robotic

applications. Hence, hardware accelerating measures shall

be taken on these time-consuming processes to ensure real-

time performance.

Zynq-7000 SoC-based low-power
real-time tracking system

Heterogeneous architecture of the real-time
tracking system

The heterogeneous computing architecture of the low-

power real-time tracking system proposed in this article

was as shown in Figure 3. The major parts of software and

digital hardware of this system were integrated on a single

Xilinx Zynq-7000 SoC. The software concerning system

control and serial processes of algorithms was running on

the PS which provided an embedded Linux environment.

The hardware, including the image acquisition logic, the

customized image accelerator logic and other digital inter-

faces or logics, was deployed on the PL.

The image acquisition logic was composed of a camera

interface module controlling the camera, an AXI-DMA

module transferring acquired images to the DDR3 RAM

through an AXI-HP port and an image preprocess module

completing image enhancement operations. The customized

image accelerator logic was centred on a reconfigurable

image accelerator, which is an FPGA-based digital circuit

executing specific time-consuming operations of image pro-

cessing algorithms. The image accelerator can be repro-

grammed online by the PS through the processor

configuration access port (PCAP). Two AXI-DMA modules

were used to realize bidirectional data transfer between the

accelerator and the DDR3 RAM through the AXI-ACP port.

Data exchange between the IP cores was completed

through AXI4-Stream buses. The PS controlled the work

mode of these IP cores by accessing control register banks

via AXI-GP ports. The AXI ports used for DMA transfers

of the image acquisition and the image accelerator were

separated to avoid bandwidth competition. Considering

that the data exchange or interactive operations between

the software and the accelerator may be frequent, the

AXI-ACP port was assigned to connecting the customized

image accelerator logic.

In our system, an OV7670 COMS camera was adopted

and configured to capture 320 � 240 16-bit RGB images at

30 fps. In the image preprocess module, acquired colour

images were converted into 320 � 240 8-bit grey images

and were then transferred to the DDR3 RAM. The whole

working process of the system was divided into two stages:

the detection stage and the tracking stage. In the detection

stage, the Gaussian background model-based detection pro-

gram was running on the PS to sense moving object entering

the field of view. And the accelerator of Gaussian back-

ground model was programmed to the reconfigurable area

of the PL. The detector would mark the target to be tracked

once it found an eligible moving object. After that, the recon-

figuration operation would be executed to program the accel-

erator of the Naı̈ve Bayes classifier to the reconfigurable

area. Then, the CT program would be launched. In the track-

ing stage, the CT program was running on the PS to succes-

sively locate the target specified in the detection stage. The

partial bit stream files and Linux driver modules to be used in

the reconfiguration operation between two stages were

stored and managed in the file system of the PS.

Table 1. Computational consumption analysis of CT algorithm.

Algorithm module Numerical operations

Time consumption (ms)

On PC On ARM

320 � 240 640 � 480 320 � 240 640 � 480

Sample candidate patches Add 0.028 0.031 0.29 0.30
Calculate integral image Add 1.19 9.44 11.23 52.89
Compressive sensing Multiplication and addition 2.42 2.76 29.46 30.84
Naı̈ve Bayesian classifier Exponent, logarithm and multiplication 13.11 14.92 99.43 99.20
Update classifier Multiplication and addition 0.58 0.68 6.32 6.53
Total – 17.33 27.83 146.73 189.76
Frame rate (fps) – 57.7 35.9 6.82 5.27

CT: compressive tracking; fps: frames per second; PC: personal computer; ARM: advanced RISC machine.

Guo et al. 5

Compared with conventional heterogeneous system

architecture for image processing like CPU–GPU and

DSP–FPGA, the presented architecture in this article has

two remarkable properties.

First, the communication between the CPU and the

coprocessor or the accelerator is completed through on-

chip buses rather than external interfaces like PCIe, which

leads to lower data latency and a more concise structure.

Thus, the processing capability and the stability of the

embedded system are ensured, which is meaningful in

applications of autonomous robots.

Second, partial reconfiguration is adopted to dynamically

switch functions of coprocessors or accelerators deployed

on the FPGA, which results in superiority in two aspects.

On the one hand, the adaptive capacity of the system to

ever-changing tasks is extended because the PS can easily

reprogram the coprocessor online to meet requirements of

different tasks or work stages. On the other hand, available

FPGA resources are extended by multiplexing in time

domain, which reduces power consumption and system cost.

Besides, the C/Cþþ language for the PS development

and the Verilog HDL (VHDL) for the PL development

have become de facto standards in hardware–software co-

development, thus programs under this architecture had

great portability. And the PS can be used either alone or

in conjunction with the PL. So lower power consumption

can be obtained by switching unused devices or logics into

low-power mode.

Design of the Gaussian background model-based
detection subsystem

The detection subsystem was designed to sense moving

objects entering the field of view and then to provide the

initial state of the detected target to the tracking subsystem.

The Gaussian background model was adopted in this sub-

system, which would be used in the scenario with static

background. The detection process of the subsystem could

be divided into two stages: the foreground detection stage

and the target marking stage. In the foreground detection

stage, the grey value of a pixel was assumed to obey a

Gaussian distribution, which can be denoted as

pixel row;col*Nð� row;col; s
2
row;col;nÞ (1)

After reading the (nþ1)-th frame, the detector tried to

judge whether a pixel belonged to a moving target or the static

foreground with [�row,col,n, srow,col,n]. In the target marking

stage, erode, dilate, connected region analysis and other mor-

phological image processing methods were used to extract

potential moving object from the foreground image. Finally,

the object larger than a threshold value would be marked as the

target to be tracked.

The Gaussian background model-based detection algo-

rithm was simple but not easy to be realized with HDL

code. Genovese et al.32 implemented Gaussian mixture

model (GMM) algorithm on Xilinx Virtex-6 FPGA with

VHDL, which was capable of processing more than 45 fps

Figure 3. Diagram of the Zynq-7000 SoC-based low-power real-time tracking system. Green arrow lines indicate AXI-Lite buses. Blue
arrow lines indicate AXI-Stream buses. Blocks marked in blue indicate programmable modules deployed on the PL. The block marked in
yellow indicates a reconfigurable module deployed on the PL.

6 International Journal of Advanced Robotic Systems

in 1080p format. Genovese et al.18 implemented the

OpenCV version of the GMM on Xilinx Virtex-6 FPGA

and ASIC with VHDL, which was capable of processing 91

fps and 60 fps in 1080p, respectively. However, the studies

mentioned above mainly aimed at processing capability of

the circuits rather than the maintainability and user friend-

liness of the system.

To reduce development time and ensure hardware relia-

bility, accelerators used in the proposed system were imple-

mented with Vivado HLS tools. The processes in the

foreground detection stage mainly concerned pixel-based

processing, which is data independent and easy to be par-

allelized on the FPGA. Besides, Vivado HLS provides

some commonly used functions for image processing, such

as erode and dilate. These functions usually performed bet-

ter than self-designed IP cores because they have been

highly optimized by Xilinx Inc. in accordance with the

hardware platform. Thus, operations in the foreground

detection stage, the erode operation and the dilate operation

were realized in the accelerator of Gaussian background

model, and other operations in the target marking stage

were realized as programs running on the PS.

Figure 4 shows the major workflow of the detection

subsystem. After booting up, the detection program would

do initialization works including loading kernel modules,

resetting hardware, and so on. Later, preprocessed grey

images were buffered in the DDR3 RAM and then trans-

ferred to the Gaussian background model accelerator. The

computed binary image was returned to the program for

potential moving object detection. If an eligible moving

object was found, then it would be specified as the target

to be tracked. Finally, the FPGA area of the accelerator

was reconfigured and the tracking subsystem was

launched.

Figure 5 shows the primary structure of the accelerator

of Gaussian background model. The 320 � 240 8-bit grey

images were serially read into the IP core from an AXI-

Stream port. Data of an image was buffered into a slice of

block RAM (BRAM) through an AXI-Stream first in first

out (FIFO). After receiving an image, the online Gaus-

sian background model computation process was started.

To reduce resource consumption and background noise,

the original image was resized to 160 � 120 before

executing pixel-based foreground detection. The resize,

erode and dilate functions were realized on the basis of

the video function library provided by Vivado HLS.

Finally, the computed binary image was sent out to an

AXI-Stream port. The multipliers and adders inside the

detection loop were highly parallelized. 2.7 times speed-

up was achieved under this heterogeneous architecture, as

shown in Table 2.

Design of the CT-based tracking subsystem

The tracking subsystem was designed to successively

determine the bounding box of a target, the initial state of

which was specified by the detection subsystem. The CT

algorithm was adopted in this subsystem as mentioned in

the section ‘Heterogeneous architecture of the real-time

tracking system’.

According to the analysis results in the section ‘Analysis

and evaluation on compressive tracking algorithm’, accel-

eration mechanisms were designed for the processes of

compressive sensing and Naı̈ve Bayesian classifier to

achieve real-time performance. The process of compressive

sensing is actually a sparse matrix multiplication operation.

Thus, it can be speed up with the advanced single instruc-

tion, multiple data (SIMD) or ‘NEON’ engine, which is a

floating-point coprocessor extension to the PS. Because the

NEON engine supports 16-channel paralleled multiply–add

operations, the calculation process could be greatly accel-

erated and the CPU load could be decreased. The process of

Naı̈ve Bayesian classifier can be denoted as

H pos;iðvÞ ¼
exp � ðvi�� pos;iÞ

2

2s2
pos;iþ10�30

� �

� pos;i þ 10�30
(2)

Figure 4. Flowchart of the Gaussian background model-based
detection subsystem. The block marked on yellow indicates the
reconfigurable area of the PL.

Guo et al. 7

H neg;iðvÞ ¼
exp � ðvi�� neg;iÞ

2

2s2
neg;iþ10�30

� �

� neg;i þ 10�30
(3)

HðvÞ ¼
Xm

i¼1

�
log
�

H pos;iðvÞ þ 10�30
�

� log
�

H neg;iðvÞ þ 10�30
�� (4)

where v 2 Rm represents the compressed feature vector of

a candidate patch and �pos, �neg, �pos and �neg represent

parameters of the classifier. Because the calculating pro-

cess mainly concerns exponent and logarithm, so a custo-

mized accelerator is more suitable to speed up the process.

Thus, the function of the Naı̈ve Bayesian classifier was

packed into an IP core in the proposed system.

Figure 6 shows the major workflow of the tracking sub-

system. After getting the initial state of a specified target

from the detection subsystem, the tracking subsystem

would launch and do initialization works. After sampling

candidate patches from an acquired grey image and calcu-

lating the integral image, the tracking program would call

the NEON engine to complete the process of compressive

sensing. Then, feature vectors of candidate patches were

sent to the Naı̈ve Bayesian classifier accelerator deployed

on the PL. According to the output of the classifier accel-

erator, the target position can be located and would be used

for updating classifier parameters later.

The accelerator of Naı̈ve Bayes classifier was also

implemented using Vivado HLS tools. Figure 7(b) shows

its primary structure. In the proposed system, the dimension

of feature vectors m was set to 50 to ensure better discri-

minative characteristics. The sampling radius g was set to

15, which led to a candidate patch number of up to 768.

Figure 7(a) shows the format of data stream transferred

from the PS to the accelerator. Classifier parameters, the

number of candidate patches and feature vectors were seri-

ally received from an AXI-Stream port and then buffered

into a slice of BRAM via an AXI-Stream FIFO. A three-

stage pipeline was constructed in the loop for classifier

response calculation. The layout of arithmetic units was

designed to be symmetrical to realize parallel computing.

Finally, the computed maximum classifier response and the

corresponding patch number were sent out to an AXI-

Stream port.

Real-time performance test results of the tracking sub-

system were as shown in Table 3. Image sequences at the

resolution of 320 � 240 and 640 � 480 were entered into

the tracking subsystem; 4.3 times speed-up was achieved

on the process of compressive sensing using NEON engine;

65.2 times speed-up was achieved on the process of Naı̈ve

Bayesian classifier using the FPGA-based customized

accelerator. The processes of Naı̈ve Bayesian classifier

cost only 15.1% of the whole time when adopting the het-

erogeneous computing technology. A tracking rate of up to

76.5 fps was achieved with NEON and the accelerator at

the resolution of 320 � 240. For the reason that the image

resolution does not have great effects on the computational

consumption of the CT algorithm, a tracking rate of 46.5

fps was achieved at the resolution of 640 � 480. Although

it decreased by 40.4%, it still met the real-time perfor-

mance demands of the robot.

Figure 5. Diagram of the accelerator of Gaussian background model.

Table 2. Real-time performance test of detection subsystem at
the resolution of 320 � 240.

Algorithm module
Without

accelerator (ms)
With

Accelerator (ms)

Detect foreground 29.30 10.38
Locate target position 0.95 0.95
Total 30.25 11.32
Frame rate (fps) 33.1 88.3

fps: frames per second.

8 International Journal of Advanced Robotic Systems

Optimization design of the proposed visual
tracking system

Though the detection and tracking system designed in the

section ‘Zynq-7000 SoC-based low-power real-time track-

ing system’ was able to meet the functional requirements of

our robots, it had obvious drawbacks in FPGA resource

utilization rate for two reasons. On the one hand, the

resource consumption of an FPGA-based image PS is large

in nature due to the high data volume of a digital image. On

the other hand, customized accelerators used in the system

were designed with high-level languages. Limited by exist-

ing compilation techniques, this design method consumes

much more resources in exchange for reliability and user

friendliness. Table 4 shows the FPGA resource utilization

of the two customized accelerators without optimization.

Because other essential logic modules of the system also

consumed a few FPGA resources, these two accelerators

cannot be deployed on the PL at the same time. Moreover,

the stability and the performance of an FPGA system may

decrease if using more than 70% of the total logic

resources. To reduce resource and power consumption,

techniques including word length optimization and

dynamic reconfiguration were adopted.

Word length optimization of the detection subsystem

Parameters of the adaptive Gaussian background model

were originally stored and processed as 32-bit floating-

point data, which led to a great amount of BRAM consump-

tion. Considering that the data format of a grey pixel value

was 8-bit unsigned char, it was achievable to replace

floating-point data with fixed-point data without seriously

affecting the detection precision. And it was important to

properly choose the word length for each parameter to

make a compromise between detection precision and

resource consumption. As to the detection algorithm

adopted in the proposed system, the optimal solution vector

was wbest¼[wbestword,mean, wbestint,mean, wbestword,dev,

wbestint,dev], where wbestword,mean (wbestword,dev) was the word

length value of expectation (standard deviation) and

wbestint,mean (wbestint,dev) was the word length value of the

integral part of expectation (standard deviation). Assuming

wbestword,mean, wbestword,dev2[1,32], the size of solution

space is 324 in this design. So the optimal solution cannot

be obtained with the method of exhaustion, especially if the

number of algorithm parameters is larger.

To avoid falling into local optimum, the simulated

annealing algorithm was adopted to search the optimal

solution. An overview of search process is provided in

Table 5. The search problem can be denoted as

min CostðwÞ
s: t: 1� QuantErrðwÞ > rate thresh

�
(5)

CostðwÞ ¼ w word; mean þ w word; dev (6)

QuantErrðwÞ ¼ 1

Row � Col

XRow

i¼1

XCol

j¼1

�
forewði; jÞ

� fore ref ði; jÞ
�2

(7)

where Cost(w) represents the resource consumption and

QuantErr(w) represents the detection error caused by quan-

tization error. forew(i,j) and foreref(i,j) were, respectively,

the detected foreground pixel value when adopting fixed-

point and floating-point data format. ratethresh was the

threshold value of detection success rate, which was

defined as

rate ¼ n TP þ n TN

n TP þ n TN þ n FP þ n FN

(8)

where n TP, n TN, n FP and n FN represent the number of true

positive, true negative, false positive and false negative

pixels, respectively. Given that the image size in this study

was small (320 � 240 or 640 � 480), ratethresh was set to

98.5% to ensure the precision of the detection subsystem.16

Figure 6. Flowchart of the compressive tracking-based tracking
subsystem. The block mark on yellow indicates the tracker
deployed on the reconfigurable area of the PL.

Guo et al. 9

The simulated annealing algorithm accepted candidate

solutions with worse precision at a certain probability to

avoid trapping in local optimum. Two image sequences

with a static background, which had a resolution of 320

� 240 and are 259 frames in total, were chosen as the test

videos. The optimization algorithm was executed on

MATLAB R2013a, which finally provided the optimal

solution wbest ¼ [18,10,12,8]. Figure 8(a) (Figure 8(b))

shows the minimum detection success rate in different

word lengths of the expectation (standard deviation) when

the word length of the standard deviation (expectation) was

set to floating-point data. When the word length shorter

than wbest was used, the success rate was lower than the

prefixed threshold. A comparison between the foreground

images calculated using the floating-point data format and

the fixed-point data format was provided in Figure 9. Three

Figure 7. Diagram of the accelerator of Naı̈ve Bayes classifier for compressive tracking. (a) The format of data transferred from the PS
to the accelerator through the AXI-ACP port. (b) Diagram of the accelerator of Naı̈ve Bayes classifier.

Table 3. Real-time performance test of tracking subsystem at the resolution of 320 � 240 and 640 � 480.

Algorithm module

No optimization With NEON With NEON and accelerators

320 � 240 640 � 480 320 � 240 640 � 480 320 � 240 640 � 480

Sample candidate patches 0.29 0.30 0.22 0.23 0.20 0.20
Calculate integral image 11.23 52.89 3.46 20.15 2.75 10.58
Compressive sensing 29.46 30.84 7.21 8.10 6.90 7.78
Naı̈ve Bayesian classifier 99.43 99.20 91.90 91.30 1.40 1.40
Update classifier 6.32 6.53 1.91 2.08 1.82 1.97
Total 146.73 189.76 104.70 121.86 13.07 21.93
Frame rate (fps) 6.82 5.27 9.55 8.21 76.5 45.6

fps: frames per second.

10 International Journal of Advanced Robotic Systems

image sequences were used to evaluate the optimized mov-

ing target detection system. Due to the finite-length effect,

a few pixels differed between foreground images in Figure

9(b) and (c). But the target contours were clear and nearly

identical. Most false positive pixels would then be elimi-

nated using the follow-up dilate and erode operations.

Thus, the optimized system was able to meet the require-

ments of practical robotic applications.

Dynamic reconfiguration of the PL

In comparison with the PS, functional modules running on

the PL exist in the form of digital circuits, which leads to

two properties. On the one hand, the dynamical reconfigur-

able property of the PL can be utilized to improve the

adaptability of the heterogeneous computing system.

According to the desired functions of the system in differ-

ent working stages, the reconfigurable regions of the PL

can be configured as corresponding devices or peripherals.

On the other hand, the PL consumes a much higher per-

centage of dynamic power than the PS. So resources of the

PL in working mode also shall be reduced for lower power

consumption. As to the proposed system, the detection sub-

system and the tracking subsystem did not work simulta-

neously because of the detection-then-tracking workflow.

In comparison with adopting FPGA with larger capacity, it

is more reasonable to use dynamical reconfiguration tech-

niques to selectively load the logic to be used in the pro-

posed system.

Dynamical reconfiguration provides a resource reuse

method in time domain which can be used in two scales.

The full reconfiguration reprograms the whole logic when

Table 4. FPGA resource utilization rate of the two customized accelerators.

Resource name BRAM_18K DSP48E FF LUT

Gaussian background model accelerator (Utilization rate) 248 (88.6%) 62 (28.2%) 15,253 (14.3%) 24,072 (45.2%)
Naı̈ve Bayes classifier accelerator (Utilization rate) 4 (1.4%) 103 (46.8%) 11,580 (10.9%) 15,248 (28.7%)
Essential logic module of the system (Utilization rate) 35 (12.5%) 8 (3.6%) 5074 (4.8%) 1843 (3.5%)
Total cost (Utilization rate) 287 (102.5%) 173 (78.6%) 31,907 (30.0%) 41,163 (77.4%)
Available 280 220 106,400 53,200

BRAM: block random access memory; DSP: digital signal processor; FF: flip-flop; LUT: look-up table.

Table 5. Principle of the simulated annealing algorithm for word length optimization.

Algorithm 1 Simulated annealing algorithm for word length optimization

procedure SimulatedAnnealingWordLengthOptimization (n)
Step #1 Set initial temperature, initialize solution vectors with random values and calculate corresponding successful rate.
wcenter¼[wcenterword,mean,wcenterint,mean,wcenterword,dev,wcenterint,dev] rand(4)
ratecenter 1-QuantErr(wcenter)
wbest¼[wbestword,mean,wbestint,mean,wbestword,dev,wbestint,dev] rand(4)
ratebest 1- QuantErr (wbest)
temp temp0

Step #2 Keep searching the optimal solution until the temperature decreases to the threshold value.
while temp<tempthreshthen

temp¼ temp�decayScale
Step #3 Select a random solution around the searching center and calculate corresponding successful rate.
wtry wcenterþrange�(rand-0.5)
ratetry 1-QuantErr (wtry)
Step #4 Update the optimal solution if the random solution is better.
if ratetry>ratethresh && Cost(wtry)<Cost(wbest) then

wbest wtry, ratebest ratetry

end if
Step #5 Selectively update the solution vector of the searching center
if ratetry>ratethresh && Cost(wtry)<Cost(wcenter)then

wtry wtry, ratetry ratetry

else
if exp(-(Cost(wtry)-Cost(wcenter))/temp)>rand then

wtry wtry, ratetry ratetry

endif
end if

end while
end procedure

Guo et al. 11

Figure 8. Relationship between the detection precision and word length. (a) Minimum detection success rate in different word length
of the expectation when standard deviation was set to floating-point data. (b) Minimum detection success rate in different word lengths
of the standard deviation when expectation was set to floating-point data.

Figure 9. Comparison between the foreground images obtained using floating-point data format and fixed-point data format.33 (a)
Input images. (b) Foreground images calculated using floating-point data format. (c) Foreground images calculated using fixed-point data
format wbest¼[18,10,12,8].

12 International Journal of Advanced Robotic Systems

switching functions of the system, while the partial recon-

figuration only reprograms related logic components and

does not break work of others. In comparison, the partial

reconfiguration has more advantages in efficiency and is

suitable for the proposed architecture. Accelerators used in

the proposed system were packed into IP cores with the

same ports to realize dynamical partial reconfiguration,

as shown in Figure 3. Four steps were executed to realize

reconfiguration between the detection and tracking stages.

First, after specifying the target to be tracked, the program

backed up related information into the DDR3 RAM. Sec-

ond, components connecting to the accelerator were tem-

porarily set to idle state in case of time sequence problems.

Three, the partial bit stream file was written to the PL

through the PCAP interface. Finally, components connect-

ing to the accelerator were restarted to recovery work.

Table 6 shows experimental results of dynamical

reconfiguration. Two banks of the PL were allocated to

the black box, in which accelerators would be loaded.

Other components like AXI-DMA were deployed outside

the black box. Because of the size of the bit stream file, the

full reconfiguration time was nearly twice larger than the

partial reconfiguration time and the image acquisition

interval, which may lead to tracking failure. Thus, partial

reconfiguration was more practical for FPGA-based real-

time vision applications.

Experimental results and discussions

To verify the validation of the proposed heterogeneous

system, an MYIRZ-Turn core board carrying Zynq-7000

SoC (XC7Z020) and an OV7670 camera was adopted to

implement the detection and tracking system elaborated in

the sections ‘Zynq-7000 SoC-based low-power real-time

tracking system’ and ‘Optimization design of the pro-

posed visual tracking system’. Three phases of experi-

ments were conducted to test the detection and tracking

precision, real-time performance and power consumption

of the tracking system.

(1) In the precision test phase, the proposed system was

tested with two benchmark image sequences, namely Bike

(320 � 240, 119 frames) and Walking (768 � 576, 140

frames). The image sequences were stored in the file sys-

tem of the proposed system and were read by the

implemented visual algorithms. The detection and track-

ing results were compared with the counterpart of the

original MATLAB programs of Gaussian background

model and CT. Figures 10 and 11 show the detection and

tracking results, respectively. In the detection mode, the

down-sampling process, the dilate operation and the erode

operation eliminated the detection noise caused by back-

ground disturbances. Then, the contour and position of the

moving target was located by analysing the connected

region. In the tracking mode, the tracking subsystem was

configured by dynamic reconfiguration. Then, the CT

tracker tracked the target with a rectangle until the target

was lost.

Two metrics are used to evaluate the precision of the

proposed system. The first metric is the success rate of the

benchmark sequences. The success rate of a frame is

defined as

score ¼ areaðROI T \ ROI GÞ
areaðROI T [ROI GÞ

(9)

where ROIT is the tracked bounding box, ROIG is the

ground truth bounding box and area(�) denotes the number

of pixels in the region. If the score is larger than the given

threshold (0.5 in this article) in a frame, it counts as a

success. The second metric is the centre location error

which is the Euclidean distance between the central points

of the tracked bounding box and the ground truth bounding

box. Experimental results on precision are as shown in

Table 7, which verified that the proposed system provided

an acceptable detection and tracking precision.

(2) In the real-time performance test phase, 11 bench-

mark image sequences in different resolutions provided in

the study by Wu et al.35 were adopted to test the tracking

rate of the proposed system. The image sequences were

stored in the file system of the proposed system and were

read by the implemented visual algorithms. The C program

of CT rewritten by us on eclipse ran, respectively, on a PC

(Intel Core i7-4712MQ, 8 GB DDR3 RAM, Windows 7 64-

bit) and a Zynq embedded system (ARM Cortex-A9 Dual-

core 667 MHz, 512 MB DDR3 RAM, Linux 3.2.16) to get

contrasting data. The proposed system was, respectively,

set to software mode (no accelerating mechanisms) and

heterogeneous mode. Table 8 shows the test results on

real-time performance. The processing rates of the CT

Table 6. Experimental results of dynamical reconfiguration.

Mode Logic name
Reconfiguration

time (ms) Bitstream size(kB)

Resource consumption of reconfiguration area (%)

BRAM DSP48E FF LUT

Full Detection 94.5 3951 62.1 14.1 14.3 25.7
Full Tracking 94.5 3951 5.0 46.8 14.2 27.0
Partial Detection 64.5 2348 51.4 14.1 12.5 38.8
Partial Tracking 64.5 2348 1.4 46.8 10.9 28.7

BRAM: block random access memory; DSP: digital signal processor.

Guo et al. 13

Figure 10. Diagram of detection and tracking experimental results on the image sequences ‘Bike’.34 (a) Original image. (b) Detected
foreground image. (c) Dilate and erode result. (d) Detection result. (e) Tracking result. (f) Tracking result.

Figure 11. Diagram of detection and tracking experimental results on the image sequences ‘Walking’.33 (a) Original image. (b) Detected
foreground image. (c) Dilate and erode result. (d) Detection result. (e) Tracking result. (f) Tracking result.

Table 7. Success rate and centre location error of tracking experiments.

Sequence

Success rate (%) Centre location error (pixel)

On PC On Zynq (software) On Zynq (proposed) On PC On Zynq (software) On Zynq (proposed)

Bike 88.2 88.2 88.2 3.1 2.4 2.9
walking 100 100 100 5.8 5.6 7.8

PC: personal computer.

14 International Journal of Advanced Robotic Systems

tracker on PC, on ARM and on the heterogeneous system

are 49.3 fps, 6.48 fps and 61.4 fps, respectively. The kernel

load of the PC and the ARMwere 19.7% and 47.2% on

average, respectively. The proposed system was able to

achieve an average tracking frame rate of up to 89.2 fps

under the heterogeneous computing architecture, which

was 35.7% faster than a computer equipped with an Intel

quad-core processor and was 9.48 times faster than the pure

software solution built on the ARM processor. Moreover,

the kernel load of the ARM processor using the heteroge-

neous architecture was decreased to 32.8%, which provided

extended room for other robotic functions in the future.

(3) In the robotic test phase, the designed detection and

tracking system was installed on a prototype of our amphi-

bious spherical robot to monitor a moving car and an under-

water robot, respectively. As shown in Figure 12, the

single-board system was able to detect the moving target

and then tracked it successfully. In the underwater experi-

ment, the fluctuation of the water surface led to a few false

positive pixels. But false detections could be avoided by

specifying the region of interest.

The proposed system measures 118 � 98 � 45 mm and

weighs 125 g. An Agilent 34410A multimeter controlled by

C# programs was used to evaluate its average power con-

sumption by continuously measuring the current and vol-

tage value. Test results show that the total power

consumption was around 2.99 W. Considering that the bat-

tery capacity of our spherical robot was 4800 mAh, it can

work in detection or tracking mode for no less than 8 h.

Conclusions

In this article, a low-power real-time detection and track-

ing system was designed and implemented for our amphi-

bious spherical robot. Given the unique mechanical

structure and the specialized application scenarios of the

robot, a novel SoC-based heterogeneous computing archi-

tecture was proposed for implementations of Gaussian

background model-based detection and CT algorithms.

Under the presented architecture, the main part of visual

algorithms was realized as software programs running on

the ARM subsystem, while compute-intensive processes

were realized as hardware accelerators running on the FPGA

subsystem. Moreover, dynamic reconfiguration and word

length optimization were adopted to improve the versatility,

adaptability and resource efficiency of the proposed system.

Experimental results confirmed that the proposed system

had advantages of lightweight, low power consumption and

good real-time performance, which was capable of meeting

application requirements of our amphibious spherical robot.

Its good real-time performance could also meet future

demands of the robot in biological monitoring and multi-

target tracking.

To the best of our knowledge, this is the first

embedded design to implement subtle tracking algorithms

on a single SoC for robotic applications. Moreover, the

proposed heterogeneous computing architecture provides

a feasible solution for mobile vision systems. The design

techniques presented in this article, including hardware–

software co-development, word length optimization and

reconfigurable customized accelerators, may promote the

practical use of state-of-the-art tracking algorithms like

TLD and MIL.

The system proposed in this article also had some inev-

itable drawbacks. The detection and tracking precision of

the proposed system was directly determined by the

adopted vision algorithms. Thus, the detection subsystem

could only process videos with static background. The

tracking subsystem had the drift problem which limited its

precision and would finally lead to tracking failures. Con-

sequently, the detection and tracking results in the experi-

ment section were not entirely accurate. Another problem

was that the study in this article mainly aimed at the design

and implementation of the robotic vision system. Robotic

application functions like visual servoing and autonomous

navigation was not realized yet. Our future study will try to

Table 8. Real-time performance test results of the proposed system.

Image sequence Resolution

Average tracking frame rate (fps)

On PC On Zynq (software) On Zynq (proposed)

Couple 320 � 240 57.4 7.34 89.2
Dancer 320 � 246 52.7 6.86 78.9
Dog 352 � 240 58.2 7.50 79.4
FaceOcc1 352 � 288 52.8 6.51 60.2
Crossing 360 � 240 54.8 6.90 79.5
Doll 400 � 300 57.9 7.52 76.9
Bolt2 480 � 270 57.3 7.26 72.7
Coke 640 � 480 40.1 5.33 37.8
Bird2 720 � 400 49.8 6.50 39.5
FleetFace 720 � 480 31.0 5.04 33.0
Walking 768 � 576 29.8 4.47 28.1
Average – 49.3 6.48 61.4

PC: personal computer; fps: frames per second.

Guo et al. 15

improve the tracking precision using state-of-the-art theo-

retical tools like the conventional neural network. We will

also focus on robotic applications and intelligent functions

of the amphibious spherical robot.

Author note

Author Shuxiang Guo is also affiliated to Faculty of Engineering,

Kagawa University, Kagawa, Japan.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect

to the research, authorship and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship and/or publication of this arti-

cle: This work was supported by National Natural Science

Foundation of China (61503028, 61375094), and Excellent

Young Scholars Research Fund of Beijing Institute of Technol-

ogy (2014YG1611). This research project was also partly

supported by National High Tech. Research and Development

Program of China (No.2015AA043202).

References

1. Kalal Z, Mikolajczyk K and Matas J. Tracking–learning–

detection. IEEE Trans Pattern Anal Mach Intell 2012;

34(7): 1409–1422. DOI: 10.1109/TPAMI.2011.239.

2. Babenko B, Ming-Hsuan Y and Belongie S. Visual tracking

with online multiple instance learning. In: Proceedings of 2009

IEEE conference on computer vision and pattern recognition

(CVPR 2009), Miami, USA, 20–26 June 2009. New York:

IEEE, 2009, pp. 983–990. DOI: 10.1109/CVPR.2009.5206737

3. Hare S, Saffari A and Torr PHS. Struck: structured output

tracking with kernels. In: Proceedings of 2011 IEEE interna-

tional conference on computer vision (ICCV 2011), Barce-

lona, Spain, 6–13 December 2011. New York: IEEE, 2011,

pp. 263–270. DOI: 10.1109/ICCV.2011.6126251.

4. Bao C, Wu Y, Ling H, et al. Real time robust L1 tracker using

accelerated proximal gradient approach. In: Proceedings of

2012 IEEE conference on computer vision and pattern

Figure 12. Robotic test of the proposed detection and tracking system. (a) Picture of the proposed system. (b) Picture of the robotic
test.(c) Original image in the land scenario. (d) Detection result of the image sequence in the land scenario. (e) Tracking result of the
image sequence in the land scenario. (f) Tracking result of the image sequence in the land scenario. (g) Original image in the underwater
scenario. (h) Detection result of the image sequence in the underwater scenario. (i) Tracking result of the image sequence in the
underwater scenario. (j) Tracking result of the image sequence in the underwater scenario.

16 International Journal of Advanced Robotic Systems

recognition (CVPR 2012), Providence, USA, 18–21 June

2012. New York: IEEE, 2012, pp. 1830–1837. DOI: 10.

1109/CVPR.2012.6247881.

5. Li X, Hu W, Shen C, et al. A survey of appearance models in

visual object tracking. ACM Trans Intell Syst Technol 2013;

4(4): 1–48. DOI: 10.1145/2508037.2508039

6. Zhang K, Zhang L and Yang M-H. Real-time compressive

tracking. In: Proceedings of the 12th European conference on

computer vision, Florence, Italy, 7–13 October 2012. Berlin,

Heidelberg: Springer, 2012, pp. 864–877. DOI: 10.1007/978-

3-642-33712-3_62.

7. Zhang T, Ghanem B, Liu S, et al. Robust visual tracking via

multi-task sparse learning. In: Proceedings of 2012 IEEE

conference on computer vision and pattern recognition

(CVPR 2012), Providence, Rhode Island, USA, 16–21 June

2012. New York: IEEE, 2012, pp. 2042–2049. DOI: 10.1109/

CVPR.2012.6247908.

8. Wang D and Lu H. Visual tracking via probability continuous

outlier model. In: Proceedings of 2014 IEEE conference on

computer vision and pattern recognition (CVPR 2014),

Columbus, Ohio, USA, 23–28 June 2014. New York: IEEE,

2014, pp. 3478–3485. DOI: 10.1109/CVPR.2014.445.

9. Guo S, Mao S, Shi L, et al. Development of an amphibious

mother spherical robot used as the carrier for underwater

microrobots. In: Proceedings of 2012 ICME international

conference on complex medical engineering (CME), Kobe,

Japan, 1–4 July 2012. New York: IEEE, 2012, pp. 758–762.

DOI: 10.1109/ICCME.2012.6275640.

10. Pan S, Shi L and Guo S. A Kinect-based real-time compressive

tracking prototype system for amphibious spherical robots.

Sensors 2015; 15(4): 8232–8252. DOI: 10.3390/s150408232.

11. Li M, Guo S, Guo J, et al. Development of a biomimetic

underwater microrobot for a father–son robot system.

MicrosystTechnol 2017; 23(4): 1–13. DOI: 10.1007/

s00542-016-2817-3.

12. Pan S, Shi L, Guo S, et al. A low-power SoC-based moving

target detection system for amphibious spherical robots. In:

Proceedings of 2015 international conference on mechatro-

nics and automation (ICMA), Beijing, China, 2–5 August

2015. New York: IEEE, 2015, pp. 1116–1121. DOI: 10.

1109/ICMA.2015.7237642.

13. Shi L, Guo S, Mao S, et al. Development of an amphibious

turtle-inspired spherical mother robot. JBionic Eng 2013;

10(4): 446–455. DOI: 10.1016/S1672-6529(13)60248-6.

14. Guo J, Guo S and Li L. Design and characteristic evaluation

of a novel amphibious spherical robot. Microsyst Technol

2016; 2016: 1–14. DOI: 10.1007/s00542-016-2961-9.

15. Poff C, Nguyen H, Kang T, et al. Efficient tracking of ants in

long video with GPU and interaction. In: Proceedings of 2012

IEEE workshop on applications of computer vision (WACV),

Breckenridge, Colorado, USA, 9–10 January 2012. New York:

IEEE, 2012, pp. 57–62. DOI: 10.1109/WACV.2012.6163046.

16. Lee B-E, Nguyen T-B and Chung S-T. Improved real-time

implementation of adaptive Gaussian mixture model-based

object detection algorithm for fixed-point DSP processors.

J Meas Sci Instrum 2010; 1(2): 116–120.

17. Cooke P, Fowers J, Hunt L, et al. A high-performance,

low-energy FPGA accelerator for correntropy-based feature

tracking. In: Proceedings of the ACM/SIGDA international

symposium on field programmable gate arrays, Monterey,

USA, 22–24 February 2013. New York: ACM, 2013, pp.

278–278. DOI: 10.1145/2435264.2435344

18. Genovese M and Napoli E. ASIC and FPGA implementation

of the Gaussian mixture model algorithm for real-time

segmentation of high definition video. IEEE TransVery

Large Scale Integr Syst 2014; 22(3): 537–547. DOI: 10.

1109/TVLSI.2013.2249295.

19. Gurcan I and Temizel A. Heterogeneous CPU–GPU track-

ing–learning–detection (H-TLD) for real-time object track-

ing. J Real Time Image Process 2015: 1–15. DOI: 10.1007/

s11554-015-0538-y. https://link.springer.com/article/10.

1007%2Fs11554-015-0538-y

20. Tomasi M, Pundlik S and Luo G. FPGA–DSP co-processing for

feature tracking in smart video sensors. J Real Time Image Pro-

cess 2016; 11(4): 751–767. DOI: 10.1007/s11554-014-0413-2.

21. Wang Q, Gao Z and Li J. Real-time tracking objects in dif-

ferent scenes on DSP and FPGA platform. In: Proceedings of

MIPPR 2009: automatic target recognition and image anal-

ysis, Yichang, China, 30 October 2009. Bellingham, USA:

SPIE, 2009, pp. 1–8. DOI: 10.1117/12.832605.

22. Nikolic J, Rehder J, Burri M, et al. A synchronized visual-

inertial sensor system with FPGA pre-processing for accurate

real-time SLAM. In: Proceedings of 2014 IEEE international

conference on robotics and automation (ICRA), Hong Kong,

31 May–7 June 2014. New York: IEEE, 2014, pp. 431–437.

DOI: 10.1109/ICRA.2014.6906892.

23. Li G and Nie D. Hardware design of video tracking system

based on DSP and ARM. ChinModElectron Techn 2008;

11(13): 104–109.

24. Guo S, Pan S, Shi L, et al. Visual detection and tracking system

for an amphibious spherical robot. Sensors 2017; 17(4): 1–21.

25. Zhou G, Ye J, Ren W, et al. On-board inertial-assisted visual

odometer on an embedded system. In: Proceedings of 2014

IEEE international conference on robotics and automation

(ICRA), Hong Kong, 31 May–5 June 2014. New York: IEEE,

2014, pp. 2602–2608. DOI: 10.1109/ICRA.2014.6907232.

26. Gao X, Mao H, Munson E, et al. Efficient parallel implemen-

tation of real-time airborne target tracking system on hetero-

geneous multicore SoC. In: SPIE proceedings Vol. 8713:

airborne intelligence, surveillance, reconnaissance (ISR) sys-

tems and applications X, Baltimore, Maryland, USA, 29 April

2013. Bellingham, USA: SPIE, 2013, pp. 34–37. DOI: 10.

1117/12.2016024.

27. Crockett LH, Elliot RA, Enderwitz MA, et al. The Zynq book:

embedded processing with the ARM Cortex-A9 on the Xilinx

Zynq-7000 All Programmable SoC. Strathclyde, Scotland:

Strathclyde Academic Media, 2014, p. 484.

28. Konomura R and Hori K. Phenox: Zynq 7000 based

quadcopter robot. In: Proceedings of 2014 international con-

ference on ReConFigurable computing and FPGAs, Cancun,

Mexico, 8–10 December 2014. New York: IEEE, 2014, pp.

1–6. DOI: 10.1109/ReConFig.2014.7032546.

Guo et al. 17

https://link.springer.com/article/10.1007%2Fs11554-015-0538-y
https://link.springer.com/article/10.1007%2Fs11554-015-0538-y
https://link.springer.com/article/10.1007%2Fs11554-015-0538-y

29. Henriques JF, Caseiro R, Martins P, et al. High-speed track-

ing with kernelized correlation filters. IEEE Trans Pattern

Anal Mach Intell 2015; 37(3): 583–596.

30. Yan Q and Li L. Kernel sparse tracking with compressive

sensing. IEEE TransComput Vis 2014; 8(4): 305–315.

31. Xu H and Yu F. Improved compressive tracking in surveil-

lance scenes. In: Proceedings of 2013 seventh international

conference on image and graphics(ICIG), Qingdao, China,

26–28 July 2013. New York: IEEE, 2013, pp. 869–873. DOI:

10.1109/ICIG.2013.176.

32. Genovese M, Napoli E, Caro DD, et al. FPGA implementa-

tion of Gaussian mixture model algorithm for 47 fps segmen-

tation of 1080p video. JElectrComput Eng 2013; 2013(20):

1–8. DOI: 10.1155/2013/129589.

33. Wu Y, Lim J and Yang M-H. Visual Tracker Benchmark

[Internet]. 2013 [Updated: 2015-08-07].http://cvlab.hanyang.

ac.kr/tracker_benchmark/benchmark_v10.html (2013,

accessed 01 November 2016).

34. Robert Laganière. OpenCV 2 Cookbook [Internet]. 2011

[Updated: 2011-12-08]. http://www.laganiere.name/open

cvCookbook/(2011, accessed 01 November 2016).

35. Wu Y, Lim J and Yang M. Object tracking benchmark. IEEE

Trans Pattern Anal Mach Intell 2015; 37(9): 1834–1848.

DOI: 10.1109/TPAMI.2014.2388226.

Appendix

In this appendix the main principles of the CT algorithm and

the Gaussian background model was introduced. Figure 13

shows the main components of the CT algorithm. As a dis-

criminative algorithm with an online learning mechanism,

CT consists of two stages: tracking and updating.

In the tracking stage, samples of the target of the (nþ1)-th

frame are sampled in a radius of g centred with In, which is the

tracking result at the n-th frame. Then, integral vectors of

these patches are calculated by accumulation. Then random

Haar-like features are extracted from the high-dimensional

integral vectors using a static matrix, which is in accord with

the compressive sensing theory. The process of compression

or feature extraction can be denoted as v¼Ru, where u 2 Rn

indicates the integral vectors and v 2 Rn indicates the com-

pressed feature vectors with dimensions m<<n. R is a very

sparse random matrix, the entries of which are defined as:

ri ¼
ffiffi
s
p
�

þ1; with probability
1

2s

0; with probability 1� 1

s

�1; with probability
1

2s

8>>>>>>>>><
>>>>>>>>>:

(10)

where s is set to m/4. For each row of R, fewer than four

entries are non-zero, which results in computational complex-

ity of the compression process as low as O(m). Then, the low-

dimensional feature vectors are entered into an online learn-

ing Naı̈ve Bayes classifier. The sample with maximal classi-

fier response is set to the target for determining Inþ1.

In the updating stage, training samples of the target and

the background are sampled according to the tracking result

at the (nþ1)-th frame (Inþ1), and the compressed feature

vectors of the training samples are used to update para-

meters of the Naı̈ve Bayes classifier, which will be used

in the tracking stage of the (nþ2)-th frame.

The Gaussian background model is an effective back-

ground subtraction method which are used in robots and

surveillance systems. An overview of the Gaussian back-

ground model-based detection is provided in Table 9.

Figure 13. Diagram of compressive tracking algorithm. (a) Tracking at the (nþ1)-th frame. (b) Updating classifier after tracking at
the (nþ1)-th frame. In represents the target position at the n-th frame, Inþ1 represents the target position at the (nþ1)-th frame and
g represents the sampling radius of candidate patches.

18 International Journal of Advanced Robotic Systems

http://cvlab.hanyang.ac.kr/tracker_benchmark/benchmark_v10.html
http://cvlab.hanyang.ac.kr/tracker_benchmark/benchmark_v10.html
http://www.laganiere.name/opencvCookbook/
http://www.laganiere.name/opencvCookbook/

Table 9. Principles of Gaussian background model-based detection.

Algorithm 2 Gaussian background model-based detection overview

procedure GaussianDetectionProcessFrame(n)
Step #1 Initialize the expected value and standard invariance of each pixel at the 1st frame
�row,col,1 �0, srow,col,1 s0

Step #2 Judge whether each pixel belongs to foreground and update background model
if pixelrow,col,n ��row,col,n<d�srow,col,nthen
�row,col,nþ1¼(1-alpha)��row,col,nþalpha�pixelrow,col,n

srow,col,nþ1¼
ffi
ð1� alphaÞ � s2

row;col;n þ alpha � ðpixel row;col;n � � row;col;nÞ
2

q
foregroundrow,col,n¼false

else
�row,col,nþ1¼pixelrow,col,n

srow,col,nþ1¼s0

foregroundrow,col,n¼true
end if
Step #3 Execute erode and dilate on the foreground binary image
Step #4 Analyze connected region and list potential movingobjects
Step #5 Mark the object larger than AreaThresh as the target to be tracked

end procedure

Guo et al. 19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

