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Adaptive neural network visual servoing of
dual-arm robot for cyclic motion

Jiadi Qu, Fuhai Zhang, Yili Fu, Guozhi Li and Shuxiang Guo
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China

Abstract
Purpose – The purpose of this paper is to develop a vision-based dual-arm cyclic motion method, focusing on solving the problems of an uncertain
grasp position of the object and the dual-arm joint-angle-drift phenomenon.
Design/methodology/approach – A novel cascade control structure is proposed which associates an adaptive neural network with kinematics
redundancy optimization. A radial basis function (RBF) neural network in conjunction with a conventional proportional–integral (PI) controller is
applied to compensate for the uncertainty of the image Jacobian matrix which includes the estimated grasp position. To avoid the joint-angle-drift
phenomenon, a dual neural network (DNN) solver in conjunction with a PI controller and dual-arm-coordinated constraints is applied to optimize
the closed-chain kinematics redundancy.
Findings – The proposed method was implemented on an industrial robotic MOTOMAN with two 7-degrees of freedom robotic arms. Two
experiments of carrying a tray repeatedly and turning a steering wheel were carried out, and the results indicate that the closed-trajectories tracking
is achieved successfully both in the image plane and the joint spaces with the uncertain grasp position, which validates the accuracy and realizability
of the proposed PI-RBF-DNN control strategy.
Originality/value – The adaptive neural network visual servoing method is applied to the dual-arm cyclic motion with the uncertain grasp position
of the object. The proposed method enhances the environmental adaptability of a dual-arm robot in a practical manipulation task.

Keywords Adaptive neural network, Dual-arm cyclic motion, Dual neural network, Visual servoing

Paper type Research paper

1. Introduction
The cyclic motion has a wide range of applications in the
industrial settings, such as welding, spraying and assembling
(Zhang and Zhang, 2012). It requires keeping the joint
configurations in accordance with the initial state and the
finished state when the end-effector achieves a closed-path
task (Xiao and Zhang, 2013). Furthermore, the dual-arm [a
humanoid robot with two 7-degrees of freedom (DOF) arms]
cyclic motion (Zhang et al., 2015) is usually applied in service
settings, such as clapping, tray carrying repeatedly and wheel
turning. Compared with the single-arm cyclic motion, a
closed-chain kinematics redundancy resolution for two
7-DOF arms has to be considered to avoid the
joint-angle-drift phenomenon (Zhang et al., 2008).

Due to the service setting generally being a complex
environment, it is necessary to introduce visual servoing
techniques to the dual-arm cyclic motion to enhance the
environmental adaptability. To the best of our knowledge, a
contribution to the literature regarding vision-based dual-arm
cyclic motion does not exist. In the visual servoing control, the
image Jacobian matrix needs to be established (Chaumette
and Hutchinson, 2006); this is related to the parameters of
the camera calibration, the depth of the feature point and the
grasp position. Inexact parameters will lead to uncertainty of

the image Jacobian matrix, which is capable of causing a task
failure (Ma and Su, 2015). Particularly, the exact grasp
position is crucial to the robot manipulation task. However, it
is difficult to obtain the real value of the grasp position in an
actual application. If a specified grasp position is explicitly
provided, platform flexibility will be greatly reduced. Thus,
the uncertainty of the image Jacobian matrix caused by the
uncertain grasp position needs to be taken into account. Based
on the above discussion, it is clear that the two problems of the
uncertain grasp position and joint-angle-drift phenomenon
must be resolved for reliable task completion.

The estimation methods in existing literatures for solving
the uncertainty of the image Jacobian matrix can be divided
into three categories:
1 The recursive Jacobian matrix estimation method: the

overall estimation of image Jacobian matrix is used
regardless of the uncertainties from the camera
calibration, the depth or the grasp position, for example,
the weighted Broyden method; the recursive least-square
method; the recursive Gauss–Newton method; and the
dynamic quasi-Newton method (Piepmeier et al., 2004).

2 Adaptive image Jacobian matrix method: the adaptive law,
by satisfying the Lyapunov stability condition, is designed
to estimate the unknown parameters online based on
linear parameterization of the image Jacobian matrix.
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Wang et al. (2012) and Liang et al. (2015) proposed a
depth-independent image Jacobian matrix which can be
linearly parameterized and designed an adaptive visual
controller to compensate for the uncertain parameters of
camera calibration, depth and robot dynamics.

3 Adaptive neural networks: the online neural network
learning was used for the adaptive visual servoing
controller to compensate for the uncertainties of the
Jacobian matrix.

Notably, the above linear parameterization was not needed
when adaptive neural networks are used. Zhao and Cheah
(2009) proposed an adaptive radial basis function (RBF)
neural network controller for a multi-fingered robot hand that
compensates for the uncertainties in kinematics, Jacobian
matrices and dynamics. For a planar robot manipulator, Yu
and Moreno-Armendariz (2005) used a RBF neural network
combined with a robust controller to compensate for
uncertainties in dynamics. With the compensation for
dynamic uncertainties using a RBF neural network, Xie et al.
(2011) compared RBF networks with other networks [back
propagation (BP), Kohonen networks, etc.], and the
comparison of the results indicate that the non-linear function
approximation capability of RBF networks is prior to that of
other networks. Zhu et al. (2008) validated that RBF networks
can effectively improve the robustness of the controller when
the system parameters have a large uncertainty. Therefore,
this paper will adopt a RBF network to deal with the
uncertainty of the grasp position. In the above-mentioned
contributions, the parameter uncertainties including the
camera calibration, depth and dynamics were discussed in the
context of a variety of applications; however, the uncertainty
of the grasp position for robot manipulation remains
unfounded.

On the other hand, the non-unique inverse kinematic
solutions of two 7-DOF redundant arms led to the
uncertainties of closed-chain joint configurations. Cai and
Zhang (2012) formulated the inverse redundancy kinematic
problem into a quadratic programming (QP) form. To solve
the QP problem, the neural network approach is introduced.
In Xia and Wang (2000), a linear variational inequality-based
primal–dual neural network (LVI-PDNN) was designed with
simple piecewise linear dynamics. Zhang et al. (2013) used the
BP neural network and the Tank–Hopfield neural network
with online learning to solve the kinematic problem; Khoogar
et al. (2011) presented a dual neural network (DNN) to deal
with the limit constraints. Zhang et al. (2009) presented a
comparison of a DNN, LVI-PDNN and a simplified
LVI-PDNN to evaluate these solutions for the QP problem for
online cyclic motion of redundant robot manipulators.
Simulation results showed that all three methods were
effective for the joint-angle-drift problem of robot
manipulators.

To solve the uncertainty of the grasp position of the object
in a dual-arm cyclic-motion application, this paper proposed a
novel cascade control strategy. A RBF neural network in
conjunction with a conventional proportional–integral (PI)
controller is applied to compensate the uncertainty of the
image Jacobian matrix which includes an estimated grasp
position. A DNN solver in conjunction with a PI controller
and dual-arm coordinated constraints is applied to optimize

the closed-chain kinematics redundancy for achieving the
dual-arm cyclic motion.

Notation: ��; �� � ��T, �T�T, Rn � real n-vectors, Rn�m � real
n � m matrices, 0n�m � zero n � m matrix, In�m � n � m
identity matrix. J � Jacobian matrix, T � transformation
matrix, q � joint angle vector, R � rotation matrix, x � pose
vector (position and orientation). Superscripts and subscripts:
b � robot base, c � camera, d � desire, o � object, img �
image, l � left, r � right, dual � dual arm, nn � neural
network, pi � PI controller, � � upper limit and � � lower
limit.

2. Problem formulation

2.1 Dual-arm robot model and coordinated
constraints
The industrial robotic platform MOTOMAN SDA5F with
two 7-DOFs robotic arms is used in this paper. The frames of
all joints are shown in Figure 1. The forward kinematics
mappings of the dual-arm robot are given as follows:

�xl

xr
� � �l

bT�ql�
r
bT�qr� � , �ẋl

ẋr
� � �Jl�ql� 0

0 Jr�qr� ��q̇l

q̇r
� (1)

where x, ẋ � R6, q, q̇ � R7, T � R4�4, J � R6�7 and q �
[�1; �2; �3; �4; �5; �6; �7]. Dual-arm joint angle and
velocity vector are defined as qdual � �ql; qr� � R14 and
q̇dual � �q̇l; q̇r� � R14; accordingly, the limit vectors are defined
as qdual

� � �ql
�; qr

�� � R14 and q̇dual
� � �q̇l

�; q̇r
�� � R14. In

addition, the linear mapping function from the control output
qdual (rad) to the input command of robot Y � R14 (pulse) is
given:

Y �
Y� � Y�

qdual
� � qdual

��qdual � qdual
�� (2)

where �qdual
� , qdual

� � and �Y�, Y�� can be found by the robot
manual.

Figure 1 Kinematic structure of the dual-arm robot MOTOMAN
SDA5F
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As shown in Figure 2, several frames are introduced. The pose
constraints between object and left end-effector are given as
follows:

pl � po � l
bR � pol (3)

l
bR � o

bRl
oR (4)

where pol � R3 is the translation vector between �o and �l ,
which is the grasp position vector of left end-effector to the
object. Due to the relative lack of motion between the object
and left end-effector at the run time, pol is a constant vector
which can be obtained at the initial state of the robot.
However, the real value of pol is difficult to be obtained in a real
environment, and the estimated value p̂ol may be used.
Similarly, the pose constraints between left and right
end-effector are as follows:

pr � pl � l
bR � prl (5)

r
bR � l

bRr
lR (6)

where prl � R3 is the translation vector between �r and �l,
which is a constant vector because of the relative lack of
motion between the two end-effectors at the run time, which
can be obtained accurately at the initial state. Differentiating
equations (3)-(6) and combining into two equations:

Jl � q̇l � � ṗo

	o
� � � Ĉ

03�7
� � q̇l, with Ĉ �


�l
bR�ql� � p̂ol�


ql

(7)

Jr � q̇r � Jl � q̇l � � D
03�7

� � q̇l, with D �

�l

bR�ql� � prl�

ql

(8)

where Ĉ � R3�7 and D � R3�7 can be calculated by the
following expression:


�R(t) � N�


q
� �I3�3 sk(R(t) � N) ��R(t) 0

0 R(t) �J(q(t))

where N is an arbitrary vector, sk is a matrix operator and
n � �n1; n2; n3�.

Let ẋ � �ṗ;	� and by equation (1), equations (7) and (8) can
be rewritten as follows:

x̂̇l � ẋo � �Ĉ
0
�q̇l (9)

x̂̇r � x̂̇l � �D0 �q̇l (10)

Equation (10) is the dual-arm-coordinated constraint. Due to
the estimated value p̂ol being used in equation (9), although ẋo

is known accurately, only the estimated values of the velocity
screws of two end-effectors x̂̇l and x̂̇r can be obtained.

2.2 Image Jacobian matrix analysis
As shown in Figure 2, a fixed camera is used to observe the
object gripped by the end-effectors. The image Jacobian
matrix denotes the velocity-level mappings from the feature
points of the object in the image plane to the pose of the left
end-effector in the Cartesian space.

The coordinate transformation of the feature point i from the
image plane �img to the camera frame �c can be obtained as
follows:

�si

1 � �
1
zi

� M � �Xi
c

1 � (11)

where si�ui, vi� � R2, X�cx, cy, cz� � R3, M � R3�4 is the
camera intrinsic matrix and zi is the depth of the feature point
i. Similarly, the coordinate transformation of the feature point
i from �c to �l can be obtained as follows:

�Xi
c

1 � � �c
bT��1 � l

bT�p̂ol

1 � (12)

where c
bT is the camera extrinsic matrix; l

bT is the forward
kinematics mapping of left end-effector in equation (1).

Differentiating equations (11) and (12), the following
combination is achieved:

ṡi �
1
zi
�m1 � ui � m3

m2 � vi � m3
� b

cR�I3 �sk�l
bR � p̂ol� �ẋl (13)

where mj � R1�3, j � 1, 2, 3 is the j-th row, the first three
columns of M. Because the estimated value p̂ol is used, the
estimated image Jacobian matrix of the feature point i is defined
as follows:

Ĵimgi �
1
zi
�m1 � ui � m3

m2 � vi � m3
� b

cR�I3 �sk�l
bR � p̂ol� � � R2�6

(14)

According to Chaumette and Hutchinson (2006),
image-based visual servoing (IBVS) only has a local
asymptotic stability when the dimension of the image
coordinates is greater than the number of 6-DOF of cameras.
Thus, the four feature points of the object (8-DOF) are
considered. The image feature vector is defined as s �
�s1; s2; s3; s4� � R8, and the desired trajectory is sd�t� �

Figure 2 Dual-arm-coordinated constraints and coordinate frames
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�s1d�t� ;s2d�t�; s3d�t�; s4d�t�� � R8. Then, the overall estimated
image Jacobian matrix of four points is:

ṡ � Ĵimgẋl, with Ĵimg � �Ĵimg1; Ĵimg2; Ĵimg3; Ĵimg4� � R8�6

(15)

The uncertainty of the grasp position pol can degrade the
performance and even destabilize the dual-arm robot system. An
accurate estimation of the image Jacobian matrix is essential for
the visual servoing controller design. The aim of this paper is to
ensure the stability of the image error in the presence of
uncertainties associated with the image Jacobian matrix.

3. Visual servoing development for dual-arm
cyclic motion

3.1 The proposed control structure
The proposed cascade control structure is shown in Figure 3,
which includes two parts: visual servoing and closed-chain
kinematic optimization. In the visual servoing control, the
visual tracking error e is projected to the desired pose error of
the left end-effector � by the estimated image Jacobian matrix.
Then, the PI controller is used to generate the pose screw ẋpi

of the left end-effector. Further, a RBF neural network
compensation control is used for the uncertainty of the grasp
position to obtain the pose screw ẋnn. Finally, the desired pose
screw of the left end-effector ẋld is obtained. In the
closed-chain kinematic optimization, the current pose error of
the left end-effector � is defined. Then, the PI controller and
dual-arm-coordinated constraints are used to generate the
pose screws �ẋl, ẋr� of two end-effectors. According to the
initial joint configurations of the dual-arm robot, a DNN
solver is used to optimize the closed-chain kinematic
redundancy to avoid the joint-angle-drift phenomenon.

3.2 Adaptive neural network control design
The aim of this section is to achieve the desired closed trajectories
tracking of the image feature points. Firstly, given the desired
closed trajectories sd�t� in the image space, the image error is:

e � sd�t� � s�t� � R8 (16)

Then, the time derivative of equation (16) is obtained as,
follows:

ė � Jimg�ẋld � ẋl� (17)

In some certain �t, the estimated Jacobian matrix Ĵimg is
introduced, and the desired pose error � of the left
end-effector mapping from the image space to the Cartesian
space is as follows:

� � Ĵimg
� � e � R6 (18)

where Ĵimg
� � R6�8 is the Moore–Penrose pseudo inverse of

the estimated Jacobian matrix Ĵimg with Ĵimg
� � �Ĵimg

T Ĵimg��1Ĵimg
T .

Differentiating the desired pose error � in equation (18), then
equations (16)-(17) are substituted into �̇, and we have:

�̇ � Ĵ̇img
� � e � Ĵimg

� � ė � �ẋl � ���ẋl, s, e� (19)

where ���ẋl, s, e� � Ĵ̇img
� � e � Ĵimg

� � Jimgẋld � Ĵimg
� �

J̃ imgẋl � R6 is the visual servoing modeling error and J̃ img �

Jimg � Ĵimg is the estimation error of the image Jacobian matrix.
To regulate the desired pose error �, the desired velocity screw
in the Cartesian space is designed as follows:

ẋld � ẋpi � ẋnn (20)

where ẋpi is the PI control signal:

ẋpi � Kp1� � Ki1 � � (21)

with Kp1 
 0, Ki1 
 0 as the control parameter matrices. ẋnn is
the feed-forward neural network control to compensate for the
visual servoing modeling error ���ẋl, s, e�. If ẋnn � 0, it
indicates that the visual servoing is only the general PI control
without the compensation of system uncertainty. To eliminate
the system error ���ẋl, s, e�, the control variable ẋnn needs to be
designed, and the neural network control needs to be adopted
to approximate the nonlinear function ���ẋl, s, e�.

The system error vector of visual servoing is � �
���; �� � R12. Furthermore, the state equation of the system
error is obtained by equations (19) and (21):

�̇ � A � � � B � �ẋnn � ���ẋl, s, e�� (22)

where the stated matrix A � R12�12 and the input matrix
B � R12�6 are:

Figure 3 The proposed cascade control structure of vision-based dual-arm cyclic-motion with the RBF neural network compensation and DNN
solver
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A � � 06�6 I6�6

�Ki1 �Kp1
�, B � �06�3 06�3

I6�3 06�3
�,

The RBF network is used to approximate ��. The input vector
of the RBF network is xin � �ẋl; s; e� � R22, and h �
�h1; h2; . . . ; hn� � Rn is the radial basis vector with Gaussian
function hi:

hi � exp
�xin � ci�

2

bi
2

, i � 1, 2, . . . , n (23)

where ci is the center and bi is the distance of the i-th neuron
of the basis function. The output vector �� of the RBF
network is:

���ẋl, s, e� � WTh(xin) (24)

where W � Rn�6 is the weight matrix, and n is the neuron
number of the hidden layer. The approximate error � of the
nonlinear function �� is introduced as follows:

���ẋl, s, e� � WTh(xin) � � (25)

The following assumptions are stated for the approximation
error �:
● Assumption 1: The optimal weight matrix W � is defined on

the compact set �, and the upper bound of the
approximation error can be defined as:

�� � sup
xin � �

����ẋl, s, e� � WTh(xin)�

Thus, the approximation error � that corresponds to the
optimal weights W � is bounded by ��� � ��:
● Assumption 2: The optimal weight W � is bounded by a

known positive value �W �
�F � Wmax.

The RBF neural network control is designed as:

ẋnn � ŴTh(xin) � Kr��Ŵ�F � Wmax�����/�r��r (26)

where Ŵ is the estimation matrix of W, the estimation errors
are defined as W̃ � W � Ŵ, the last term in equation (26) is
the robustifying signal with a diagonal matrix Kr 
 0 and
r � ��TPB�T � R6. P � R12�12 is the positive definite
solution for the Lyapunov equation ATP � PA � Q � 0 with
a positive definite matrix Q � R12�12.

The network is trained online by the following adaptive law:

Ŵ̇ � �hrT � �����Ŵ (27)

where � 
 0, � 
 0 are the adaptation design parameters.
By equations (21), (26) and (27), the desired velocity screw

ẋld in equation (20) is obtained, thus the desired pose screw xld

can be obtained by the integral operation. The following
theorem is given about the stability of the visual servoing and
weight matrix of the network:
● Theorem 1: For the RBF neural network control law (26) with

the weight adaptation laws (27), the system error � and the
neural network weights W̃ are uniformly ultimately bounded in
the compact set xin � �.

Proof: First, the approximation error of the uncertainty
function �� by the RBF neural network is defined as:

enn � ���ẋl, s, e� � ŴTh�xin�

Substituting equation (25) into the above equation:

enn � � � W̃Th�xin�

Constructing the Lyapunov candidate function:

Vnn �
1
2

��P� �
1

2�
tr�W̃�W̃�

Differentiating Vnn along the error dynamics (22):

V̇nn �
1
2

��TP�̇ � �̇TP�� �
1
�

tr�W̃̇TW̃�

� �
1
2

�TQ� � �TBTP� � hTW̃BTP� �
1
�

tr�W̃̇TW̃�

Considering hTW̃BTP� � tr�BTP�hTW̃�, we have:

V̇nn � �
1
2

�TQ� �
1
�

tr���BTP�hTW̃ � W̃̇TW̃� � �TBTP�

Substituting equation (27) into V̇nn:

V̇nn � �
1
2

�TQ� � k1�xin�tr�ŴTW̃� � �TBTP�

By using the inequalities, tr��̃T�� � �̃�� � ��̃�F���F � ��̃�F
2,

then:

tr�ŴTW̃� � tr�W̃TŴ� � tr�W̃T�W �
� W̃�� � �W̃�F�W

�
�F

� �W̃�F
2

The following equality is used:

�k1�W̃�F	max � k1�W̃�F
2 � k1	�W̃�F �

	max

2

2

�
k1

4
	max

2

Then:

V̇nn � �
1
2

�TQ� � k1�����W̃�F�W
�
�F � �W̃�F

2� � �TBTP�

� �
1
2

�min�Q����2 � k1��� �W̃�F�W
�
�F � k1��� �W̃�F

2

� ��0��max�P���� � � ���	1
2

�min�Q���� � k1	�W̃�F �
	max

2

2

�
k1

4
	max

2 � ��0��max�P�

To ensure V̇nn � 0, the following conditions need to be
satisfied:

1
2

�min�Q���� � ��0��max�P� �
k1

4
	max

2

or k1	�W̃�F �
	max

2

2

�
k1

4
	max

2 � ��0��max�P�

Then, V̇nn is negative if:
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��� �
2

�min�Q�
	��0��min�P� �

k1

4
	max

2 

or �W̃�F �

	max

2
� � 1

k1
	��0��max�P� �

k1

4
	max

2 

Thus, the system tracking error � and weight matrices W̃ are
uniformly ultimately bounded.

3.3 Dual neural network-based closed-chain kinematic
optimization
The current pose error � of the left end-effector between xld in
previous section and xl from the robot feedback is:

� � xld � xl (28)

To regulate the error �, the PI control is used to obtain the
velocity screw of the left end-effector:

ẋl � Kp2� � Ki2 � � (29)

with Kp2 
 0 and Ki2 
 0 as the control parameter matrices.
Further, the velocity screw of the right end-effector ẋr can be
obtained by equation (10).

To achieve the dual-arm cyclic-motion, it needs to satisfy
the following condition:

when�xl�tf� � xl�0�

xr�tf� � xr�0� � , then qdual�tf� � qdual�0� .

where 0 and tf are the time instant of initial and final,
respectively. It is expected that the closed trajectories of two
end-effectors in Cartesian space may yield the closed
trajectories in the joint space. To achieve the drift-free
closed-chain redundancy resolution, Zhang et al. (2009)
presented the above problem as the following quadratic
program (QP) with the physical constraints:

�minimize 1
2

q̇dual
T · q̇dual � ���qdual�t� � qdual�0���T · q̇dual,

subject to � Jl 06�7

06�7 Jr
� · q̇dual � �ẋl

ẋr
� ,

�� � q̇dual � ��
(30)

with:

�� � max 
q̇dual
� , ��qdual

� � qdual�t���,
�� � min
q̇dual

� , ��qdual
� � qdual�t���,

The dynamic bound constraint �� � q̇dual � �� is a unified
manner, where the following transformation from qdual to q̇dual is
used:

��qdual
� � qdual�t�� � q̇dual � ��qdual

� � qdual�t��

where � 
 0 is the intensity coefficient. The joint-angle-drift
error of dual arm �qdual�t� � qdual�0�� is introduced in equation
(30), and � 
 0 is the convergence rate, especially if � � 0, the
drift-free closed-chain redundancy resolution is ineffective.

Next, a DNN-based QP solver for drift-free redundancy
resolution of the dual-arm robot will be presented for solving the

QP problem [equation (30)], and the effectiveness of the DNN
solver has also been verified for the redundancy resolution of a
single-arm robot manipulation (Zhang et al., 2009).

Firstly, the equality and inequality constraints in equation
(30) are combined into one bilateral constraint, and the
following notations are defined as:

��: � � ẋl

ẋr

��
�, ��: � � ẋl

ẋr

��
�, Jdual � �Jl 06�7

06�7 Jr

I14�7 I14�7

� (31)

where Jdual � R26�14 is defined as the dual-arm robot Jacobian
matrix. Thus, equation (30) can be rewritten as:

�minimize 1
2

q̇dual
T � q̇dual � ���qdual�t� � qdual�0���T � q̇dual,

subject to �� � Jdual � q̇dual � �� . (32)

Secondly, equation (32) can be considered as a parametric
optimization problem. q̇dual is a solution to equation (32) if and
only if there is a dual decision variable vector u � R26 such that:

q̇dual � Jdual
T u � ��qdual�t� � qdual�0�� � 0

and:

��Jdual � q̇dual�i � �i
�, ui 
 0,

�i
� � �Jdual � q̇dual�i � �i

�, ui � 0,

�Jdual � q̇dual�i � �i
�, ui � 0

(33)

In addition, equation (33) is equivalent to piecewise linear
equation Jdualq̇dual � g�Jdualq̇dual � u�, where g�� � � is a
projection operator from R26 onto �: � 
u��� � u �
��� � R26, and the i-th output of g��u� is defined as:

g��ui� � ��i
�, ui � �i

�,
ui, �i

� � ui � �i
� i � 1, . . ., 26

�i
�, ui 
 �i

�,
(34)

Thirdly, the necessary and sufficient condition for solving
equation (32) is that q̇dual and u need to satisfy: q̇dual �
Jdual

Tu � ��qdual�t� � qdual�0�� � 0 and Jdualq̇dual � g��Jdualq̇dual �
u�. Further, the following condition is given:

�q̇dual � Jdual
Tu � ��qdual�t� � qdual�0��,

g��JdualJdual
Tu � �Jdual�qdual�t� � qdual�0�� � u�

�JdualJdual
Tu � �Jdual�qdual�t� � qdual�0��.

(35)

By equation (35), the dynamic equation and the output
equation of DNN is obtained:

��u̇ � g��JdualJdual
Tu � �Jdual�qdual�t� � qdual�0�� � u�

�JdualJdual
Tu � �Jdual�qdual�t� � qdual�0��,

q̇dual � Jdual
Tu � ��qdual�t� � qdual�0��.

(36)

where � � R26�26 is a design parameter used to scale the con-
vergence rate of DNN. Finally, qdual can be obtained by
the integral operation of q̇dual solved by equation (36). Further, the
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input command of dual-arm robot Y can be obtained by equation
(2). The following theorem is given to ensure the convergence
and the optimal solution of (36) for the QP problem (30):
● Theorem 2: For any initial joint configuration q̇dual of the

dual-arm robot, the DNN [equation (36)] is exponentially
convergent to an equilibrium point u�. The output q̇dual

� �
Jdual

T u� � ��qdual�t� � qdual�0�� is the optimal solution to the
original QP problem [equation (30)].

Proof: The proof is similar to the work in Zhang et al. (2009),
and it is omitted.

4. Experiments and results

4.1 Experiments setup
The experimental setup is shown in Figure 4. A Point Grey
Blackfly color camera is fixed above the robot workspace with
the accuracy of 0.1 mm, resolution of 640 � 480 pixels and 24
frames/s. The camera intrinsic and extrinsic matrices are
calibrated by Camera Calibration Toolbox for MATLAB:

M � �1007.6 0 639.5 0
0 1077.9 511.5 0
0 0 1 0

�,

c
bT � �

�0.4355 0.6729 �0.5952 337
0.8238 0.5632 �0.0354 �364
0.3609 �0.4760 �0.8000 868

0 0 0 1
�

Two experiments are carried out: carrying a tray and turning
a steering wheel. Four marks are set on both the tray and
wheel; the centroids of which are extracted by the image
processing algorithm of the color space.

As shown in Figure 5, the initial joint configurations of two
experiments are set. The grasp positions are set with an arbitrary
pose of the two end-effectors, and the relative pose errors of the
two end-effectors are recorded. It should be noted that the rigid
contact between the end-effector and the object has to be
considered. To enhance the passive compliance, the syntactic
foam is pasted on each fingertip to ensure the experiment is
carried out with an allowable pose error. By the test experiments,
the desired accuracies of two experiments are defined as: the
image tracking error is less than 2 pixels, and the joint-angle-drift
error is less than 0.1 rad.

The parameters of the RBF network are fixed: the centers ci

are chosen so that they were evenly distributed to span the
input space of the network, bi � 10 and the neuron number of
the hidden layer is n � 45.

4.2 Experiment 1: carrying the tray repeatedly
The initial joint configurations are set as ql � ��1.50; �0.46;
1.79; 0.78; 1.36; 0.06; �0.88� and qr � ��1.28; �0.43; 1.55;
0.81; 2.53; 0.13; �2.49� rad. The relative position prl �
�7.61; 467.61; 0.03� mm; the relative orientation is
��2.955; �0.475; 0.064� rad. The Cartesian coordinates with
respect to �o are set as ox � �0; 0; 0�, ox �
��43; 3; 0�, ox � �2; � 72; 0� and ox � ��43; � 72; 0� mm. The
real value of the grasp position is pol � �88; 73; 32� mm, and the
estimated value is set as p̂ol � �70; 60; 32� mm. The initial image
coordinate vectors of the four feature points
are set as s0 � �144; 699; 338; 634; 281; 540; 43; 615� pixels.
The tray is expected to move along a trapezoid trajectory.
The desired image closed-trajectories consist of five
piecewise line equations, where four trapezoid vertices are
defined as the path points: sA, sB, sC and sD.

The image displacements at the four path points with
respect to sd are set as: �sA¡0 � �37; 5�, �sB¡0 � �69; 45�,

Figure 4 Experimental setup

Figure 5 The initial states of two experiments
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�sC¡0 � ��74; 28�, �sD¡0 � ��36; �3�. The finished image
coordinate s1 is equal to s0.

The control parameters are set as: Kp1 � 2.5I6�6, Ki1 �
0.2I6�6, � � 4, � � 0.1, Kr � I6�6, Kp2 � diag, {10, 10, 10, 20,
20, 20} Ki2 � diag, {0.05, 0.05, 0.05, 0.1, 0.1, 0.1}, � �
15, � � 5 and � � 10�4.

The experiment snapshots from two viewpoints are shown
in Figure 6. An extra camera is placed near the workspace to
observe the experiment process, and the scene in the fixed
camera is shown. For clarity, only one feature point is
described. The full task is divided into five phases along the
path points from A to D. Although the estimated grasp
position is used, the image feature points of the tray achieved
successfully the closed-trajectory tracking task along the
desired trapezoidal trajectory, and the joint configurations
maintain invariability.

The experiment results are shown in Figure 7. It should
be noted that when an exact grasp position is known, the
conventional PI control can be competent to the dual-arm
motion control. When the grasp position is uncertain, the
PI-RBF method is proposed on the basis of PI control. To
indicate the superiority of the proposed method, the results
when using the conventional PI control [ẋnn � 0 in equation
(20), � � 0 in equation (30)] are introduced for
comparison. The three image trajectories of one feature
point are shown in Figure 7(a). At the beginning, the real
tracking trajectory has a large error compared with the
desired trajectory. Subsequently, the trajectory is
asymptotically stabilized to the desired location near the
path point A and benefits from the uncertainty p̂ol

compensation by the RBF network. In contrast, the
tracking trajectory generated by the PI control has a large
error value when compared to the desired location during
the whole process because of the lack of uncertainty
compensation. The image tracking errors of four feature
points of the proposed and conventional method are shown

in Figure 7(b). The average tracking errors of the proposed
PI - RBF is 1.2 pixels, which is much less than 5.8 pixels of
the conventional PI control. All joint-angle trajectories of
dual-arm robot are shown in Figure 7(c)-(d). Obviously,
when compared to the initial state, the trajectories without
compensation (no symbol) have large drifts on the left: ql1,
ql2, ql3 and ql6, and the right: qr2, qr3, qr5 and qr6. The average
drift joint errors of the left and right arms reach 0.963 and
0.492 rad, respectively. However, the trajectories of all
joints with DNN compensation (with symbol) show few
fluctuations. Accordingly, the trajectories using DNN
compensation (with symbol) have relatively few fluctuations
in all joints. Compared to the initial state, the average error
of the dual-arm robot is (0.079, 0.034) rad, which is less
than one-tenth of the errors observed using the PI method.

To indicate the feasibility of the proposed method, additional
four cases are added to Table I (the results of Figure 7 are
recorded as Case 1). It should be noted that because of the fixed
coordination constraint of dual-arm manipulation, the pose error
of the right end-effector will be the same as the one of the left
end-effector. Therefore, only the Cartesian errors of the left
end-effector are given in both experiments. The real values of the
grasp position are varied, whereas the estimated values are fixed.
The error between the real and estimated value is defined as
p̃ol � pol � p̂ol, and the average error of p̃ol between these five trials
is (25,27,0) mm. The errors in three spaces had an increasing
trend along with p̃ol; however, the error is limited within a small
range, where the maximum errors are 2 pixels (image), 7.9 mm
(position), 0.034 rad (orientation) and (0.095, 0.073) rad (joint),
which meets our experimental objective. The final average error
for these five cases was 1.5 pixels for image tracking, (5.3 mm,
0.027 rad) for Cartesian tracking and (0.083, 0.051) rad for
joint-angle-drift – this is significantly less than the average error of
6.4 pixels, (14.1 mm,0.046 rad) and (1.034, 0.708) rad obtained
by the conventional method.

Figure 6 Experiment snapshots for carrying the tray
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4.3 Experiment 2: turning the steering wheel
First, it is necessary to explain the characteristics of
Experiment 2. Due to the rigid construction of both the
steering wheel and end-effector, uncertainty of the grasp

position may lead to task failure, the tracking errors both in the
image plane and in the Cartesian space must be very small
regardless of the control method used and the tracking
trajectory must be circular.

Figure 7 The experiment results of carrying the tray in the image space (a)-(b), and in the joint spaces (c)-(d)

Table I Grasp positions and average errors in comparison experiments of carrying the tray

Case

Grasp position (pol) Conventional method (PI) Proposed method (PI � RBF � DNN)

Real (mm)
Estimated

(mm)
Image
(pixel)

Left
Cartesian
(mm, rad)

Joint angle
(left, right)

(rad)
Image
(pixel)

Left
Cartesian
(mm, rad)

Joint angle
(left, right)

(rad)

1 (88, 73, 32) (70, 60, 32) 5.8 (10.6, 0.037) (0.963, 0.492) 1.2 (3.3, 0.021) (0.079, 0.034)
2 (74, 79, 32) (70, 60, 32) 5.6 (11.8, 0.031) (0.841, 0.693) 1.3 (3.9, 0.019) (0.076, 0.046)
3 (95, 86, 32) (70, 60, 32) 6.2 (13.6, 0.044) (0.981, 0.587) 1.4 (5.2, 0.028) (0.075, 0.041)
4 (106, 96, 32) (70, 60, 32) 6.8 (16.6, 0.056) (1.243, 0.812) 1.8 (6.2, 0.031) (0.095, 0.062)
5 (112, 102, 32) (70, 60, 32) 7.6 (18.1, 0.062) (1.142, 0.955) 2.0 (7.9, 0.034) (0.088, 0.073)
Average: p̃ol (25, 27, 0) 6.4 (14.1, 0.046) (1.034, 0.708) 1.5 (5.3, 0.027) (0.083, 0.051)
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The initial joint configurations are set as ql [�0.04; 0.71; 0;
1.14; �1.51; �1.59; �1.52] and qr � [�0.03; 1.21; 0; 1.79;
�1.52; �1.60; 0.32] rad. The relative position prl �
[�72.34; 233.22; 1.43] mm; the relative orientation is [0.007;
�0.021; 0.197] rad. The Cartesian coordinates with respect to
�o are set as ox � �0; 0; 0�, ox � [�2; 27; 0], ox � [�3; �29; 0]
and ox[3; �53; 0] mm. The real value of the grasp position is
pol � �85; 120; 5� mm, and the estimated value is set as
p̂ol � �70; 100; 5� mm. The initial image coordinates vector of
four feature points are set as s0 � �216; 337; 208; 328;
219; 330; 221; 327� pixels. The steering wheel is expected to
achieve the movement of a closed-circular trajectory. The desired
image closed-trajectories equation is given as:

sd�t� � scircle �
d
2�cos�g�mt/tm�

sin�g�mt/tm� � , t � �0, 2tm�

where �m � arccos��sB � scircle� � �s0 � scircle�/��sB � scircle��s0 � scircle���;
scircle � �105; 422� is the image coordinate of the circle center which
is obtained in advance. sB � �340; 336� is the finished point of the
front half of the entire closed-circular trajectory. d is the diameter of
the steering wheel. g indicates the direction of the angular velocity,
g � 1 when t � �0, 2tm� in the front half of the closed-circular
trajectory and g � �1 when t � �tm, 2tm� in the last half of the one.
tm � 70 (s) is the half time of the entire experiment. The control
parameters are set as: Kp1 � 5I6�6, Ki1 � 0.05I6�6, � � 10, � �

0.1, Kr � I6�6, Kp2 � diag, {2, 2, 2, 5, 5, 5,} Ki2 � diag, {0.02, 0.02,
0.02, 0.5, 0.5, 0.5} � � 10, � � 10 and � � 10�6.

The experiment snapshots are shown in Figure 8. Again, for
the sake of clarity, one feature point is described. The path
points A and C are introduced only to explain the process of
the full task. From the initial state 0 to the finished state 1
along with the path points A-B-C, the image feature points of
the wheel successfully achieved the closed-trajectory tracking
task along the desired closed-circular trajectory, and the joint
configurations remain invariable.

The experiment results are shown in Figure 9. The three
image trajectories of one feature point are shown in
Figure 9(a). In accordance with expectations, the tracking

trajectories by the conventional and proposed method are
both coincident with the desired trajectory within a very small
visual measured error. However, the conventional trajectory
(dash line) terminated in some iteration because of the pose
error of the left end-effector caused by uncertainty of the grasp
position, ultimately resulting in task failure. The image
tracking errors of four feature points of the proposed and
conventional method are shown in Figure 9(b). The average
tracking error of the proposed method is 1.5 pixels.
Furthermore, the tracking error of the conventional trajectory
is terminated at 89 s, thus the average error of the whole task
is imponderable. The joint-angle trajectories are shown in
Figure 9(c)-(d). The trajectories obtained while using the
proposed method (with symbol) have only a few fluctuations
in all joints. Compared to the initial state, the average error is
(0.049, 0.062) rad. Furthermore, at the terminal instant of the
conventional trajectories, there is large joint-angle-drift error
in some joints, such as the left: ql2 and ql6 and the right: qr2, qr4,
qr5 and qr6.

As with the Experiment 1, additional four cases are added
for comparison, and the data are presented in Table II (the
results of Figure 9 are recorded as Case 1). It should be noted
that because the end-effectors and the steering wheel are
regarded as the fixed connection rigidly, that is the desired and
real position trajectories of the end-effectors are the same, only
the orientation error of the left end-effector are given in this
experiment. Due to the large estimated error p̃ol leading to the
task failure, p̃ol were decreased accordingly in other cases [the
average error is (15.2, 8.6, 0) mm]. The average errors are 1.3
pixels (image) and (0.049, 0.054) rad (joint). Importantly, the
average orientation error of the left end-effector is 0.068 rad,
well within the 0.1 rad range, which ensures the wheel turning
task is achieved successfully. In contrast, the first three cases of
the conventional method failed because of the large estimated
error p̃ol which leads to the large average orientation errors of
the left end-effector (�0.1 rad). In Case 4-5, a small value of
p̃ol is selected, and the large average orientation errors of the
left end-effector are limited within 0.1 rad. Thus, the task is
achieved in these iterations with the average error of 1.1 pixels
and (1.232, 1.081) rad; however, the joint angle-drift-error
is still large due to the lack of the closed-chain kinematics
redundancy optimization.

5. Conclusion
In this paper, a vision-based dual-arm cyclic-motion
method is developed; the PI-RBF-DNN control method is
proposed to compensate for the uncertainty of the grasp
position and optimize the closed-chain kinematics
redundancy for avoiding the joint-angle-drift phenomenon.
The two experiments carried out by the MOTOMAN
dual-arm robot indicate that the trapezoidal trajectory
tracking of the tray is successfully achieved with an average
image error of 1.5 pixels and the joint-angle-drift error of
(0.083, 0.051) rad. The closed-circular trajectory tracking
of the wheel is also achieved successfully with an average
image error of 1.3 pixels and a joint-angle-drift error of
(0.049, 0.054) rad. The data satisfy the experiment
requirements and validate the effectiveness, accuracy and
realizability of the PI-RBF-DNN method.

Figure 8. Experiment snapshots for turning the steering wheel
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The proposed method can enhance the flexibility of the
manipulation object in a dual-arm cyclic motion task. In other
words, an arbitrary size of the tray in service and nursing
settings or the valve in industrial and rescue settings can be

used. On the other hand, the desired image trajectories are
given in advance in this paper. Therefore, object recognition
and autonomous planning technique will need to be
developed in the future.

Figure 9 The experiment results of turning the steering wheel in the image space (a)-(b) and in the joint spaces (c)-(d)(a) The image
trajectories, (b) The average image errors of the four feature points, (c) The joint trajectories of the left arm (symbol: proposed, no symbol: PI),
(d) The joint trajectories of the right arm (symbol: proposed, no symbol: PI)

Table II Grasp positions and average errors in comparison experiments of turning the steering wheel

Case

Grasp position (pol) Conventional method (PI) Proposed method (PI � RBF � DNN)

Real (mm)
Estimated

(mm)
Image
(pixel)

Left
orientation

(rad)

Joint angle
(left, right)

(rad)
Image
(pixel)

Left
orientation

(rad)

Joint angle
(left, right)

(rad)

1 (85, 120, 5) (70, 100, 5) – 0.107 – 1.5 0.070 (0.049, 0.062)
2 (92, 115, 5) (70, 100, 5) – 0.112 – 1.4 0.082 (0.057, 0.074)
3 (100, 95, 5) (70, 100, 5) – 0.120 – 1.3 0.088 (0.076, 0.056)
4 (64, 93, 5) (70, 100, 5) 1.2 0.064 (1.272, 1.055) 1.1 0.048 (0.039, 0.043)
5 (73, 106, 5) (70, 100, 5) 1.1 0.074 (1.191, 1.107) 1.1 0.052 (0.024, 0.033)
Average: p̃ol (15.2, 8.6, 0) 1.1 0.095 (1.232, 1.081) 1.3 0.068 (0.049, 0.054)
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