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Abstract—Timely and accurate auxiliary diagnosis of in-
tracranial aneurysm can help radiologist make treatment plans
quickly, saving lives and cutting costs at the same time. At
present Digital Subtraction Angiography (DSA) is the gold
standard for the diagnosis of intracranial aneurysm, but as
radiologists interpret those imaging sequences frame by frame,
misdiagnosis might occur. The utilization of computer-assisted
diagnosis (CAD) can ease the burdens of radiologists and
improve the detection accuracy of aneurysms. In this paper,
a deep learning method is applied to detect the intracranial
aneurysm in 3D Rotational Angiography (3D-RA) based on
a spatial information fusion (SIF) method, and in stead of
3D vascular model, 2D image sequences are used. Given the
intracranial aneurysm and vascular overlap having similar
feature in the most time, rather than focusing on distinguishing
them in one frame, the morphological differences between
frames are considered as major feature. In the training
data, consecutive frames of every imaging time series are
extracted and concatenated in a specific way, so that the spatial
contextual information could be embedded into a single two-
dimensional image. This method enables the time series with
obvious correlation between frames be directly trained on
2D convolutional neural network (CNN), instead of 3D-CNN
with huge computational cost. Finally, we got an accuracy of
98.89 %, with sensitivity and specificity of 99.38% and 98.19 %
respectively, which proves the feasibility and availability of the
SIF feature.

Index Terms—Intracranial aneurysm, computer-assisted di-
agnosis, spatial information fusion, deep learning.

I. INTRODUCTION

ntracranial aneurysm (IA), is a swelling part on an artery
Iin the brain. Intracranial aneurysm is the main cause
of subarachnoid haemorrhage, and its morbidity is next to
the hypertensive cerebral hemorrhage and thrombosis [1].
Because there are usually no obvious symptoms when an
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aneurysm forms, about 80% to 90% aneurysms are found
after it ruptured [2]. Therefore, timely and accurate treatment
is indispensable.

So far, Computed Tomographic Angiography (CTA),
Magnetic Resonance Angiography (MRA), and Digital Sub-
traction Angiography (DSA) are regarded as the diagnosis
and treatment approaches [3][4]. CTA is a non-invasive
volumetric imaging technique that does not require arterial
puncture or catheter manipulation. However, the specificity
and sensitivity could be low on small aneurysm in the
hindbrain. MRA is a non-invasive and non-radiative imaging
technique. Whereas deficiencies are that patients with metal
in their bodies cannot use MRA, and its detection accuracy is
inferior to DSA due to the low resolution [5]. DSA is suitable
as an interventional imaging technique, contrary to CTA and
MRA, and therefore can be applied during treatment. It has
a relatively high sensitivity and specificity for aneurysm
detection, and can steadily depict the spatial location of
aneurysms [6]. On the other hand, the radiation affects
both patients and surgeons because vascular interventional
surgery must be carried out to apply contrast and even
endovascular bypass.

Imaging techniques yield a great deal of information that
radiologists or other medical professionals have to analyze
and evaluate comprehensively in a short time. To relieve
them from repeating hard work and improve the accuracy
of aneurysm detection, computer-assisted diagnosis (CAD)
can assist doctors in the interpretation of medical images
[71[8]. CTA is fast, non-invasive, and relatively inexpensive
and MRA is radiation-free and non-invasive. Radiologists
use them in many instances. Then they analyze these images
to determine the location and size of the aneurysm. How-
ever, DSA is still considered the gold standard for cerebral
aneurysm diagnosis. If any interventional therapy is needed,
then there would be more data to process. Radiologists need
to perform angiography on main intracranial arteries, and
interpret the angiographic sequences frame by frame, which
is a great burden. Such repetitive work can lead to mind
fatigue and even misdiagnosis [9].

Therefore, the introduction of CAD system is significative.
It firstly reduces the redundant information in the imaging
sequences, processes the medical image systematically and
finally combines the original imaging sequences with useful
information. The result is then screened by the radiologist
for rapid and accurate diagnosis. This saves time and im-
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proves diagnostic accuracy. It is noteworthy that the CAD
is definitely not going to replace the radiologist or other
medical professional, indeed it can be an efficient assistant.

In this paper, we present a fully-automatic intracranial
aneurysm detection method based on spatial information
fusion (SIF) method. Instead of using the 3D vascular model
that reconstructed from the 3D-Rotational Angiography (3D-
RA), we chose the original 3D-RA projection images. There
are three reasons in total. Firstly, 3D reconstruction needs
threshold segmentation which will significantly affect the
measurement results [10]. The selection of Hounsfield Unit
(HU) thresholds may influence the size of the measured
aneurysm, whereby lower a HU threshold could artificially
make vessels appear larger and vice versa. Furthermore,
as is widely reported that the sizes of aneurysm necks
that could be measured on 2D-DSA tended to be smaller
compared to 3D reconstructed DSA [11][12], so in our
clinical practice, we combine the 2D-DSA and 3D-DSA
to get a more comprehensive assessment for intracranial
aneurysms. Secondly, 3D-CNN is not mature enough since
the computation and memory requirements are very huge.
Finally, this method might also provide reference for some
other recognition tasks on 2D images or videos. Since the
sequences of 3D-RA consists of a series of 2D images that
were obtained by scanning head around, there is a certain
projection angle relationship between the front and rear
frames. On the basis of traditional batch-based classification
method, we embedded the spatial information into a single
image by concatenating the consecutive frames, so that the
aneurysm can be distinguished from the curve of vessels
or overlap between vessels which are very similar to the
aneurysm. The rest of this paper is organized as follows:
Section II describes the current state-of-the-art by citing
related research work and Section III provides a detailed
overview of proposed computer-aided aneurysm diagnosis
method. Section IV presents experimental results and per-
formance evaluation of our proposed framework in terms of
robustness and efficiency. Finally, Section V concludes the
paper and highlight some future directions.

II. RELATED WORK

There are already many studies on CAD systems, espe-
cially on microscopic pathology image. The most commonly
used methods are machine learning. Support vector machines
(SVM) and random forest (RF) are used in predicting non-
small cell lung cancer prognosis [13]. Deep belief network
(DBN) and haar-wavelet were applied to detect mammo-
graphic masses [14]. Convolutional neural network (CNN)
was developed for detection on lymph node, breast cancer
[15], prostatic cancer [16], brain tumour [17], brainstem
gliomas [18], and melanoma [19]. Besides these image-
based method, CNN also had an excellent performance on
medical image aynthesis with adversarial learning strategy
[20]. Accuracy about 90%-95% rate was achieved in the
classification and grading of breast cancer, brain tumor and
prostate cancer. 3D-CNN with high computational overhead

obtained high accuracy likewise on pulmonary nodule de-
tection [21]. As for intracranial aneurysm, a large portion of
studies focused on semi-automatic or automatic aneurysm
CAD system for aneurysm detection and morphological
analysis [22][23] through MRA and CTA rather than DSA.
The main reason is that MRA and CTA data can be viewed
from different projection angle in both 2D and 3D modes.
The 3D vascular model that is reconstructed from the 3D-RA
data includes more spatial information but it requires more
advanced hardware, and larger doses of radiation. However,
despite that DSA is gold standard of intracranial aneurysm
detection and rupture risk quantification, it still remains less
researched, which we suppose 2D images and difficulties on
obtaining available dataset might contribute to the reasons.

Miki et al. [24] evaluated the CAD in a routine reading
environment. The use of the CAD system increased the
number of detected aneurysms by 9.3%. Takahiro et al.
[25] analysed different indicators of aneurysms, such as size,
location, patients gender and age, and come to the conclusion
that the size of aneurysm had significant influence to the
detection results. Those aneurysms with more than 4-5 mm
in diameter reached almost 100% accuracy. As the size
decreases, the detection accuracy would greatly reduce. It
might also be related to the resolution of the MRA imaging.

Clemens M. et al. [26] proposed a system to detect
intracranial aneurysm in 3D-RA, MRA and CTA based on
blob-enhancing filter. The method was tested on 65 an-
giography sequences. Finally they achieved 96% sensitivity
with 2.6 FP/ds (false positive per data set) in 3D-RA, 94%
sensitivity with 8.0 FP/ds in MRA and 90% sensitivity with
28.1 FP/ds in CTA. Whereas their high sensitive came at the
expense of false positive rate.

Jerman et al. [27] applied detection using random decision
forests with hand-crafted feature. On 10 restructed 3D vessel
containing 15 aneurysms, the proposed method achieved a
100% sensitivity at 0.4 FP/ds. However,the small data set
means it can be incomplete for all kinds of aneurysms.
So later they proposed an automatic way to detect saccular
aneurysms in restructed 3D vessel [28], where a spherical
and elliptical structure enhancing filter was followed by a
2D-CNN. However, the same problem about simplex and
tiny data set still existed.

Ines Rahmany et al. [29] proposed a 2D-DSA intracranial
aneurysm detection system based on the fusion of two fuzzy
classifiers. The idea of segmenting the vascular tree by Fuzzy
C-Means (FCM) and Fuzzy K-Nearest Neighbor (FKNN) is
convincing, but the reliability of the system is questionable
because the number of training data is not mentioned, and
the final result is without detailed explanation. The same
problem occurred on paper [30], sensitivity 100% with 1.85
FPs (false positive cases) per patient was obtained on 7
aneurysms by using gradient concentrate filter in MRA.
Malik et al. [31] proposed an intracranial aneurysm detection
framework on 2D-DSA which achieved high accuracy of
98% for classification. A total of 47 aneurysms from 59
angiographic sequences were used. Each sequence was rel-
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Fig. 1: Flowchart of the proposed framework for computer-aided intracranial aneurysm detection system. (a) shows the pre-processing for original imaging sequences. (b)
Architecture of convolutional neural network, VGG16 was used for transfer learning. (c) Adjustment on network. The original top layers were replaced with new pooling and

fully-connected layers. (d)Model evaluation and prediction.

atively clear and the size range of aneurysms was between
6mm and 21mm, but there is no discription on distribution
of aneurysm diameter.

We therefore conclude that most of the existing studies on
intracranial aneurysm detection are conducted on the basis of
3D data obtaining from CTA, MRA, and 3D-DSA. Among
them, the most commonly used method is the spherical
filter [32][33], which is then classified by decision forest
or CNN. Little comprehensive effort has been devoted to
2D-DSA or 3D-RA that is not reconstructed, although DSA
is the gold standard for aneurysm diagnosis. Methods such
as FCM, distance transformation and multi-layer perceptron
(MLP) have achieved good results, but there still exist two
unavoidable problems. One is the small amount of training
and test data, and the other is that the size of aneurysms
is limited to a narrow range. Both lead to insufficient
representation and generalization of CAD system.

III. DESIGN OF THE ANEURYSM DETECTION SYSTEM

Due to the excellent performance of deep learning models
in natural language process and computer vision, it has been
gradually valued in biomedical informatics [34][35]. Most
convolutional neural networks use single original or clipped
images as training data, and some use feature maps to further

improve the convergence speed and accuracy. These methods
are very useful for target recognition and classification task,
but it cannot effectively identify targets in video sequence,
which is mainly because of the loss of spatial or temporal
relationship between frames. To improve that, rather than
feeding single image, we fuse the spatial information of
consecutive frames into a two-dimensional image to reserve
the third dimensional feature.

A. Pre-processing

As the two images at the bottom of Fig. 1(a) show, the
original dicom data on the left is almost black and no blood
vessels are visible in the image. So we perform Gamma
Correction on the original image and then stretch or shrink
its intensity to right levels. The original data are unsubtracted

(b)
Fig. 2: Example of unsubtracted, pre-contrast, and digital subtraction image.
X-ray sequences for blood vessels in a bony or dense
soft tissue environment, which are produced using contrast

()
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Fig. 3: Demonstration of spatial information fusion method. Original sequences (a) of contrast and un-contrast data were used to generate digital subtraction angiography data
(b). (c) A certain amount of ROIs were extracted from consecutive frames and then concatenated as the training data (d).

medium. The images are useful for determining anatomical
position and variations, but unhelpful for visualizing blood
vessels. Therefore, we applied digital subtraction to the
original data by the pre-contrast sequences. The obtained
images are the same as DSA as shown in Fig. 2.

To reduce the noise in the fluoroscopic images, the median
filter is applied to remove noise and smooth every single
frame [28][31]. Since there is no reference image, we mea-
sure the filters in terms of the Signal to Noise Ratio (SNR).
With the lowest score of bilateral filter as the normalization
criterion, the median, gaussian and bilateral filter scores are
1.0294, 1.0282 and 1.0046 respectively.

B. Spatial information fusion(SIF)

A simple two-dimensional image contains plane informa-
tion, including edges, textures, colors, lines and other factors,
whereas a 3D model represents the shape established by the
surface information of an object, with the object itself as the
center of the coordinate system. And from the perspective of
the observer, it is possible to observe the same object from
different directions and obtain the previously blocked surface
information within a certain range. This is a 2.5D description
of the target which we applied in this method, similar to
the principle of binocular or multi-camera calibration. The
traditional method of training network with single image
will lose the information between frames. Taking part of
features as a whole may lead to the decrease on accuracy.
This would have few impact on the object recognition and
classification task in daily life, whereas in the angiography,
the features of vascular curve and overlap are very similar to
aneurysms. When these structures are in the same frame, it
is prone for CNN to ignore the characteristics of the trend of
blood vessels around aneurysms and misclassify them. If it is
an overlap between vessels or a sudden curve of vessel, the

imaging of it shall gradually disappear with the change of
angiography angle but aneurysms will not. As shown in the
Fig. 4, the overlaps are marked in blue, and the aneurysms
are marked in red. With viewpoint changing, the shadow
of vascular overlaps would fade, disappear or even appear
again, but aneurysms barely changed.

Fig. 4: Demonstration of vascular overlaps and aneurysms with different viewpoint.
First row is non-subtraction image, and second row is subtraction imgae. Aneurysms
are marked in red circle and vascular overlaps are marked in blue circle.

Although there have been studies on the application of
3D-CNN to the behavior recognition of video monitoring,
the amount of parameters of 3D-CNN is so much that it
cannot be widely used at present. Therefore, we consider to
fuse the spatial information from the time series into single
image, so that the two-dimensional image could contain
the contextual information in the series. Though imageing
sequence consists of two-dimensional image data, it can also
be regarded as three-dimensional data if we take time or
projection angle into account. As depicted in Fig. 3, the
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imaging sequence can be expressed as follows:
i(N) = {i9,49,42°, ..., iV 1%} (2)

where 6 is the difference of angiography angle between
each frame, > represents the nth frame with viewing angle
a = nf, then z’ZL’ZG represents the mth frame after &
with viewing angle o + m#6. Note that the angle difference
between frames is not a constant value because of the
acceleration and deceleration of the machine at the beginning
and end of the rotational scan. And this method is not
sensitive to the angular change since the SIF feature is
composed of the special information brought by the angle
difference. Each frame in the sequence can be seen as a
different angle projection of the 3D blood vessel model.
Finally we denoised each frame, extract m regions of interest
(ROIs) from every [ consecutive frames and concatenate
them vertically into a single image STF — m:

i (0,¥0) =i 47l (xo.v0) (3)
where (xg,y0) is the central coordinate of the i%. Notice that
the m successive regions of interest (ROIs) have the same
central coordinate, which means their spatial positions are
constant on the timeline. In this case, the aneurysm will not
always be at the center of the image, but will be shifted to
a certain extent as the angle changes, and might disappear
in the latter ROIs.

C. Model Selection

Deep learning paradigms are used for feature extraction
and transfer learning [36]. Since these networks are deep,
complex in structure and have a large number of parameters,
it takes a lot of time to train a network from scratch. Mean-
while superficial layer of CNN learns the basic structure
of the image, such as color and edge features, which are
common features of things, whereas the deeper layer of
network learns the abstract features of the image, such as the
wheels of a car, the eyes of a person, or aneurysms in the
intracranial blood vessels. Therefore, we froze the shallow
layer of networks and keep the weight parameters of these
layers untrainable, only the specified layers were trained.

TABLE I: INITIAL TEST RESULTS OF CNN PARADIGMS

Model Training Acc.  Valid Loss  Test Acc.
VGG16 94.31 27.8 91.12
ResNet50 89.1 61.6 51.23
InceptionV'3 83.38 51.7 65.67
DenseNet121  91.52 38.6 87.45

VGG16, ResNet50, InceptionV3 and DenseNetl21 are
outstanding in the field of computer vision, so an initial test
are conducted to select the appropriate model for this task.
Non-augmented SIF-3 features were used as the data set.
As the TABLE 1 shows, VGG16 is chosen for its better
and steady performance. Other models have achieved good
or even better results in ImageNet, but complex structures
lead to overfitting or just hard to converge. In fact, despite
the large number of VGGI16 parameters, nearly 110M of

them come from the two large full-connection layers at the
top of the network. So we only maintained the architecture
of models that do not include the top layers. Then on
the top of the last convolutional layer, we added a global
average pooling layer, followed by a fully-connected layer
with ReLU and the final classification layer with Softmax.
The categorical cross-entropy loss was used as minimization
objective function. Assuming that the distribution of ground
truth label is p and the distribution of label from the model
output is ¢, then the cross-entropy of them on the given
data set X is CE(p,q) = — Y. p(z)logq(x). Stochastic
X

gradient descent (SGD) was £c€h0sen as the optimization
technique with initial learning rate of 10~*. Momentum
and Nesterov term were used to suppress oscillation and
accelerate convergence, and to provide a correction during
gradient updates while increasing sensitivity, respectively.

D. Data set

In vascular interventional surgery, X-ray was cast 180°
around patients’ head, from the right side to the back and
finally to the left side. We acquired 300 original sequences
with 263 aneurysms from Beijing Tiantan Hospital, China.
A waiver was obtained from Beijing Tiantan hospital ethic
board. The original data contained 133 frames per sequence,
with an average inter-frame angle difference 1.36°. 15
uniformly distributed frames of each original sequences
were picked out by radiologists and then the ground truth
of aneurysm was performed by 5 professional radiologists.
Due to the large angle difference, aneurysms on the further
branch are more likely to be lost in the latter ROIs. As
shown in Fig. 5, r; and 7o are the perpendicular distance
to the center of brain. 6 is the angle difference of imaging
machine. w; and wy are the window width of ROIs. This
diagram is on transverse plane, namely viewing from the top
of the head to the feet. A is an proximal aneurysm on artery
and B is an distal aneurysm on branch. As the X-ray machine
rotates, aneurysm B at the distal end of the branch travels
a longer distance on the circle, which is BBy > AA;. So
there exists the following relationship:

wy =711(1 —sinf) < wy =1rz(1 —sinb)

In other words, to see both B and B1 from the coronal plane,
we need a larger window width than that for A and Al.

'y

—
Transverse plane

Fig. 5: Schematic plan of field angle of aneurysms on artery(A) and on branch(B).
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Therefore, in the original 133-frame sequences, the aver-
age inter-frame angle difference of 1.36° could ensure the
presence of aneurysms in the selected ROIs. However, it is
precisely because of the small angle difference, the adjacent
images are almost unchanged, and it is difficult to distinguish

84
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40 4

20

[ On artery [ On arterial branch ‘

Fig. 6: Distribution of diameters(d) of aneurysms on artery and arterial branch.

the aneurysm from the vascular overlap and corner. This
will cause a lot of redundant computing, not conducive to
the improvement of accuracy. The inter-frame difference of
the training data selected by the radiologist is suitable to
observe the changes in vascular structure. But the more the
ROI in a SIF image is, the more likely the aneurysm in the
latter ROI will disappear.

There are 263 aneurysms in total. The diameters of
them range from 1.8mm to 40.22mm, in which the median
is 7.6mm. The diameter distribution is shown in Fig. 6.
Aneurysms in 3D data could be easily detected when they
are larger than 4-5Smm in diameter. But in 2D data, due to the
occlusion, when the diameter of aneurysm is similar to that
of the brain vessel, they cannot be clearly distinguished. For
instance, aneurysms that occur on the artery as (a)(b) in Fig.
6 are less likely to be detected than those occur on arterial
branch as (c)(d).

&

(a)3mm.a ()Smm. (c)6mm.b (d)7mm.b

Fig. 7: Demonstration of aneurysms with different dimeter and position.(a) and (b)
are aneurysms on vascular trunk with 3mm and 8mm in diameter; (c) and (d) are
aneurysms on vascular branch with 6mm and 7mm in diameter.

IV. EXPERIMENT AND RESULTS
A. Experimental Setting

1) Data: 300 original sequences with 263 aneurysms
were acquired. Among them 50 sequences are negative,

and 8 sequences are with multiple aneurysms. Patients’
angiograms and other clinical data were anonymized before
analysis. The amount of ROIs to be concatenated per figure
is empirically determined. The single-slice ROI with shape
250 x 250 are extracted from original image with shape
1240%960. The size of vertically connected images increases
with the number of ROIs, in order not to oversize the data,
we limit the number of ROISs to 3 to 6. All the SIF data were
then augmented with horizontal and vertical flip, width and
height shift and rotation with angle 90°, 180° and 270°, so
that the number of training data expanded about sevenfold.
2) Evaluation index and experiment environment: For
model performance evaluation, we adopt Accuracy, Preci-
sion, Sensitivity (also called as True Positive Rate(TPR)
or Recall), Specificity (also called as True Negative
Rate(TNR)), which are widely accepted as evaluation in-
dexes in machine learning. All experiments are conducted
on a computer with CPU Inter Core 15-8400 @ 2.80 GHz,
GPU NVIDIA GeForce GTX 1050 Ti, and 16G of RAM.

recision = rr (5)
p TP+ FP
. . . TP
sensitivity = recall = TPR = TP+ FN (6)
TN
speci ficity R FP+TN @

B. Experiment on SIF feature and Pre-processing

With the balance of the memory consumption and effi-
ciency, we conducted experiments on SIF-5 comparing to the
Non-SIF training data, which consists of single frame from
the sequences as mentioned above. Also, the effect of noise
reduction is given. As shown in the chart below, networks
trained with filtered SIF data obtained better performance
than that trained with Non-SIF or unfiltered data. All the
data here have been augmented.

TABLE II: IMPACT OF SIF FEATURE AND NOISE REDUCTION ON VGG16 (%)

SIF Acc. TNR TPR Precision
Non-SIF 87.49 88.32 86.42 85.03
Non-SIF” 84.94 85.79 83.91 82.02
SIF-5 98.89 98.19 99.38 98.72
SIF-5" 97.39 96.79 97.84 97.61

* Without noise reduction.

The TABLE II shows the improvement of the accuracy
with the filtered SIF feature. Noise reduction was less
effective on augmented data than on un-augmented data,
but still slightly improved the performance. Although the
dimensions of the data themselves have not changed, the
amount of information contained in a single image has
multiplied. In terms of image size, the larger the image,
within a certain range, the more information it contains. The
third dimensional spatial information of the original imaging
sequence is fused into the two-dimensional image, providing
the network with the context information of aneurysm.
Therefore, the task of aneurysm recognition is not limited to
the traditional single image recognition or target detection,
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Fig. 8: Change in the detection accuracy, specificity(TNR), sensitivity(TPR) and precision of the proposed method for intracranial aneurysm under different SIF feature, which
are presented in different colors. (a) and (b) are the networks trained with augmented data and non-augmented data, respectively.

but combined with the spatial information, which greatly
improves the accuracy.

C. Experiment on data augmentation and SIF features

The most important difference between deep learning and
traditional machine learning is that its performance increases
with the amount of data. If the data are in limited quantities,
then the performance of the deep learning algorithm could
not be good as expected, which is because it needs a huge
amount of data to understand the patterns contained therein.
Since there exists little data available to the public, most
medical image-based deep learning is limited by the size
and breadth of the data. Therefore, it is critical to apply
augmentation on data set.

In this part, we will study the influence of different SIF
features on the detection results. In a single training image,
the SIF features with different amount of consecutive ROIs
range from three to six. The selection of the range is based
on the aforementioned inter-frame angle difference and the
rotational angle relationship between the proximal and distal
aneurysms described in Fig. 5. When the amount of ROIs
in the SIF feature exceeds a certain limit, we are prone to
lose aneurysms in the latter ROIs, which will not be helpful
for aneurysm detection. This is because with the increase in
amount of single image, aneurysms may or may not appear
in the latter ROIs of positive data. Meanwhile, the features of
some overlaps of blood vessels are difficult to distinguish,
so it is easy to confuse them with the features of small
aneurysms. We explored the performance of aforementioned
networks with and without data augmentation along with
different SIF features, which are given in TABLE III.

As is depicted in Fig. 8 and TABLE III, there exists an
overall trend that the network performance first improves and
then degrades with the increase of SIF features. Although
the precision of SIF-3 in Fig. 8 (a) and TPR of SIF-4 in
(b) are slightly inconsistent with the trend, we can still
conclude that the network would have a better performance

TABLE III: IMPACT OF DIFFERENT SIF FEATURES ON VGG16(%)

Augmentation Acc. TNR TPR Precision

3 Aug. 9831 9778 98.68  98.49
Non-aug. 91.12  88.67 92.77 92.34

4 Aug. 98.51 9786 99.17 97.96
Non-aug. 9226 9210 9241 92.38

5 Aug. 98.89 9819 99.38  98.72
Non-aug. 9347 9343 9350 9523

6 Aug. 9839  97.72 9891  98.24
Non-aug. 92.67 90.81 9475  92.96

with SIF-5. When the number of SIF features contained
in an image goes up, more dimensional information is
included. Consequently, the accuracy has improved, which
is consistent with our previous assumption. However, when
it comes to SIF-6, the overall performance declines. We
suppose that this is because there is a large angle difference
between the first frame and the last frame of a batch of
images where SIF features are extracted from. On the other
hand, many aneurysms in the latter frames are lost, making
the size of the single image increase without embedding
more useful features.

g 99.57% 99.37% 99.82% 99 80%
99'007: - i 99.64%
98.50% R
98.00%

97.50%
N —SIF-3
—iF-4
89.00%
88.50% S
ss00%  B87.98% SIS
g 86.74%
86.50%
d<=3 3<d<=5 S<d<=7 d>7

Fig. 9: The detection accuracy for aneurysms with different diameters under different
SIF features on VGG16. d represents the diameter.

At the same time, since the size of aneurysms also
has an impact on detection result, we made a quantitative
evaluation to discuss the detailed relationship. As can be
seen from Fig. 9 and TABLE IV, the detection accuracy
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TABLE IV: THE DETECTION ACCURACY FOR ANEURYSMS WITH DIFFER-
ENT DIAMETERS UNDER DIFFERENT SIF FEATURES ON VGG16 (%)

SIF d<3 I<=d<§  5<=d<7 d>=7
SIF-3 87.98 98.21 98.12 99.54
SIF-4 88.71 99.57 99.23 99.80
SIF-5 86.74 99.47 99.37 99.82
SIF-6 86.97 99.11 98.74 99.64

of miniature aneurysm with diameter less than 3mm was
relatively low, with an average level of 87.6%. When the
aneurysm diameter was 3mm to Smm, the average accuracy
increased to 99.09%. When the aneurysm diameter further
increased to Smm to 7mm, the average accuracy decreased
slightly to 98.84%. When the aneurysm diameter was larger
than 7mm, the detection accuracy was improved to 99.7%.

Meanwhile, it can be found that when the aneurysm
diameter was less than 3mm, the detection accuracy of SIF-
5 and SIF-6 was lower than that of SIF-3 and SIF-4. This is
consistent with our previous analysis that aneurysm features
are more difficult to detect when the SIF features exceed
a certain limit. Those redundant information increases as
SIF features increase, and the available features will be
overwhelmed by other information, so its accuracy declined
instead. With the increase of aneurysm diameter, the detec-
tion accuracy of SIF-3 went lower than that of other SIF
features, whereas the high detection accuracy of SIF-5 was
basically consistent with the previous conclusion.

D. Model evaluation

In order to evaluate the proposed method, we use the
original contrast sequences with 133 frames as the test data,
which are in accord with the clinic. As mentioned above,
the training data are 15 frames of images selected from the
original data. However, this kind of sequences will not be
used in clinic, and due to the large angle difference, those
aneurysms which are more off-center are more likely to be
lost in the latter frames. The original data size is 1240*960,
with 133 frames in total, which means much unnecessary
time would be cost when it’s detected frame by frame
since the angle difference between frames is only 1.36°.
Therefore, a process of original sequence-based intracranial
aneurysm detection system is designed to fit the trained
model, as given in Algorithm 1.

To ensure the accuracy, we set a random starting point
start, namely skipping the first start frames of the original
133-frame sequence. The value of start does not need to be
large, but can grow from the zero, that is, it is consistent with
the frequency of detection. With each new starting point, a
new test sequence is extracted from the original sequence
and only few frames would be repetitively chosen. In this
way we can test the same sequence multiple times without
using the same sample.

In the previous experiment, the SIF-5 data reached the
best results, so SIF-5 was used for test. We extracted 1 frame
every 9 frames from the original 133-frame sequences, so
12 frames B were obtained per sequence as the first frames

of 12 SIF-5 images. The remaining 13 frames were reserved
for later SIF features. For each B,,, the computational area
was further reduced to the region of the skull R,,, which
can improve the computational efficiency. Then a series
of preprocessing followed, and R, was divided into 12
overlapping patched. To generate SIF-5 images, we set r’,
in R,, as the first small ROI of SIF-5, and the R, is the jth
frame in S accordingly, where the boundary condition was
(m—1)(g+1) <k+133 —n(k+ 1) — start so that SIF
data would be generated on the last frame in R,. Every g
frames in S after R,, was chosen and a clipped image with
the same position as r’, was taken as another small ROI
in SIF-5. Finally, we detected the generated SIF image and
then integrated the results.

Algorithm 1 The test on Model for aneurysm detection in
original imaging sequence (with a shape of 1240%960%133)

Input: Original imaging sequence S (133 frames in total)
Output: Negative / Positive (if positive: return bounding
box position (bbox))

1: Set a random starting position start (start € 0,1,2,...).
It can be set more than one time to achieve multiple
detection without duplicate samples;

2: Choose a batch of frames B containing n frames: pick
out 1 frame every k frame from .S, so there would be
n = [(133 — start)/(k + 1)] frames in the batch;

3: Set j = start+(n—1)(k—+1)+1 as the actual position
of B, in original sequence S;

4: for frame B, in batch B do

5: The region of patient’s head R,, is segmented at a
shape of 800*600 on the unsubtracted image to reduce
scanning area and speed up calculation;

6: Contrast control and noise reduction;

Digital subtraction;
12 overlapping patches r¢ (i =
tracted from R,,;
9: for patch ri in R, do
10: To generate STF —m feature data, set a constant
g as the number of frames that were skipped in .S. Note
that (m—1)(g+1) < k+133 —n(k+1) — start. Then

1,2,...,12) are ex-

concatenate 7°¢,, rgHgH, - rng(m_l)(gﬂ) as ct;
11 Detection results d’, «<— Model(c?,).
12: if d, == Positive then
13: bbox + position ¢ in frame n.
14: end if
15: end for
16: if Positive results in rﬁl > 3 then
17: This frame is positive.
18: end if
19: end for
20: if Positive frames in R}, > limit condition then
21: This sequence is positive.
22: return bounding box
23: end if

The overlapping way do increase the cost of compu-
tation, but also prevents the aneurysm from being at the
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TABLE V: COMPARISON WITH OTHER METHODS.

Method Modality Amount of Aneurysms  Size(mm) Accuracy Sensitivity FP/case
CNN-+distance mapping[28] 3D-DSA 21 - - 100% 24
CNN-+MIP[25] TOF-MRA 508 2-5+ - 94.2% 29
Blobness filter+RF[27] 3D-DSA 10 - - 76% 2.4
MLP+Haralick feature[31] 2D-DSA 47 6-21 98% 97% -
Proposed method: CNN+SIF 2D-DSA 263 2-40 98.89% 99.37% -

LDF: linear discriminant function. MIP: maximum intensity projection. MLP: multilayer perceptron. RF: random forest.

edge or corner of the image where cannot be detected
normally. Meanwhile, due to the location of aneurysms, most
aneurysms can be scanned by 4 patches in all locations,
except those distal aneurysms which can only be scanned
by 3 patches in a few locations like the edge of R,.
Therefore, if there are more than three positive sites in a
same SIF image, we can consider that there is aneurysm
in the intersection part of those overlapping areas. Note
that there is a bounding box(bbox) in Algorithm 1, which
is used to mark the position of aneurysm in each frame.
In this way, we cannot only further screen and correct the
wrong position according to this series of detected aneurysm
position, but also provide radiologists with a visual feedback
of the position information to improve efficiency.

V. DISCUSSION

For the 12 SIF-5 images in the whole sequence, we can
confirm the existence of aneurysms in the sequence when
more than 7 of them are marked. The determination the
limit conditions of 7 were obtained based on experiments (as
shown in Fig. 10) and the following points: at the beginning
and end of many angiography sequences, the contrast agent
in the blood vessels was not in a filling state (Fig. 11(c)), thus
many images did not have the characteristics of aneurysms
at this stage. Secondly, since the inter-frame angle difference
is around 4° in the test method, which is nearly four times
than that of the training image, the smaller angle difference
cannot avoid the occlusion or overlapping relationship in
some cases. And finally we get an overall accuracy of
98% on original sequences, which can effectively provide
radiologists with useful auxiliary diagnosis.

99 00%

98.50% 5.98.50%

98.00% =, 98.00%

97.50%

97.00% o- .
97.00% 97.00%

96.50%

96.00%

6 7 8 9 10

Fig. 10: Test accuracy under different limit condition. 200 sequences randomly selected
from data set are used for test, and the limit condition are set from 6 to 10.

We have presented an efficient method for CAD system
of intracranial aneurysm, and make a comparison with some
other methods in TABLE V. The diameters of aneurysms

range from 1.8mm to 40.22mm, in which the median is
7.6mm. It can be seen that we have a wide range in size
and amount, covering different types and sizes of aneurysms,
rather than the detection just saccular aneurysms as [31].

The proposed method is remarkably convincing, ensur-
ing high accuracy and sensitivity under the large span of
aneurysm size. However, the proportion of data distribution
between the saccular aneurysm and the fusiform aneurysm is
very unbalanced, and they were not been labeled by radiolo-
gists. On the other hand, the occurrence rate of the fusiform
aneurysm is much lower than that of the saccular aneurysm,
so the few training data lead to the poor performance of the
network to detect the fusiform aneurysm with small diameter
(Fig. 11(b)).

Since our detection is in the form of window sliding,
it is less favorable for multiple aneurysms. If the distance
between multiple aneurysms is large, which means they
would be not likely to appear in the same window, we
might get far more than four positive areas in the twelve
overlapping patches. So in this situation we can detect
multiple aneurysms as well as the single aneurysm. However,
when two or more aneurysms are in adjacent area and the
overlapping window is unable to scan them separately, it
is difficult to get information of multiple aneurysms from
CAD, which requires further diagnosis from radiologists.
The improvement of this will be carried out in the next stage.

Fig. 11: Examples of saccular aneurysms (a), fusiform aneurysms (b) and aneurysms
under incomplete angiography (c).

VI. CONCLUSION

Most studies on intracranial aneurysms focus on three-
dimensional data such as MRA and CTA, which are rel-
atively easy to process. However, DSA is still the gold
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standard in the current aneurysm diagnosis. Therefore, we
proposed a computer-assisted diagnosis method for intracra-
nial aneurysm based on 3D-RA sequence that is not re-
constructed. By integrating spatial information into two-
dimensional data, we significantly improved the detection
accuracy of single image. Finally, our method achieve
98.86% accuracy, 99.38% sensitivity and 98.19% specificity.

We first adjusted the brightness and contrast of sequences,
and then performed digital subtraction and noise reduction.
After that, we used the SIF feature images of sequence
as the training data, and applied rapid transfer learning
by slightly adjusting the structure of VGG16. In order to
evaluate the effectiveness of SIF features, we studied the
influence of SIF features at different scales, and further
measured the performance on aneurysms with different sizes.
Finally, we found that the SIF feature could effectively
improve the detection accuracy of aneurysm to a certain
extent, but after exceeding a limit, redundant information
would be introduced and effective features of aneurysms
would be overwhelmed. Therefore, the upper limit of scale
should be carefully considered for different forms of data. In
future work, we would further improve feature classification
methods and the form of SIF features.
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