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 Abstract-The more hidden information from surface 

electromyography (sEMG) should be extracted for the continuous 

estimate of the human motion intention based on sEMG. Since 

feature selection is very important to generalize an estimate 

model. In this work, the time-domain features (TF), and 

corresponding time-delayed features (TDF) of sEMG were 

extracted to estimate human upper limb joint motion. 

Considering execution time and measure accuracy, Random 

Forests (RF) algorithm is applied to estimate the joint motion 

based on the multi-features of sEMG. The difference between the 

actual angle and the estimated angle were calculated to verify the 

performance of proposed estimate model. Moreover, the average 

time of motion estimation is also calculated and the significance of 

each feature was quantized. Finally, the results showed that the 

TDF features of sEMG perform well for estimating the joint 

motion. 

 

Index Terms - continuous estimation. surface EMG. feature 

selection. joint motion. 
 

I.  INTRODUCTION 

Currently, the increasing people affect neuromuscular 

insults, such as stroke, which may cause the loss of upper limb 

motion function for many patients. However, the upper limb 

motion function plays an important role to perform activities 

of daily living (ADL). Clinical researches indicate that 

hemiplegia is usually caused due to the inappropriate treatment 

of neurological impairment after stroke frequently [1], [2]. The 

delay of Intervention therapy will affect patient’s functional 

capability restoration and increase rehabilitation duration [3]. 

The rehabilitation robots are usually applied to rehabilitate the 

limb movement function in practical clinical application [4]. 

Currently, surface electromyographic (sEMG) as the control 

source has been widely used to patient’s functional 

rehabilitation training in order to realize friendly human-

machine interaction [5]. And many sEMG-based motion 

recognition algorithms are also presented to measure limb 

motion. However, the limb motion of many ADLs is 

continuous and the existing recognition algorithms are not 

available to realize the continuous estimation of limb joint. 

Feature extraction and estimate methods of the continuous 

limb motion are important to motion estimation. The 

effectiveness of feature selection can extract more available 

information from sEMG thus improving the estimation 

accuracy of motion estimation.  

The raw sEMG is low-SNR and its energy mainly is 

concentrated at 13~500 Hz [6]. Since the available feature 

selection and motion estimation methods are vital. Generally, 

the feature signals of sEMG involve time-domain features, 

frequency-domain features and time-frequency domain 

features [7]. The time-domain features mainly involve 

integrated electromyogram (IEMG), mean absolute value 

(MAV), waveform length (WL), and zero crossing (ZC), 

difference absolute standard deviation value (DASDV), slope 

sign changes (SSC), and so on. The frequency-domain features 

mainly involve auto-regressive coefficients (AR), power 

spectrum (PS), mean frequency (MF), median frequency 

(MDF), frequency ratio (FR), and so on. The time-frequency 

domain features include short time Fourier transform (STFT), 

wavelet transform (WT), and so on [8], [9]. The joint angle is 

usually applied to estimate the upper limb motion. Generally, 

the estimation methods like Hill muscular model is usually 

used to establish the biomechanical model to reveal the 

relevance between sEMG signal and the limb joint movement 

[10], [11]. Due to the poor performance of above model, some 

common machine-learning models are proposed to replace the 

biomechanical models including radial basis function (RBF) 

neural network, back propagation (BP) neural network, 

random forests (RF) and support vector machines (SVM) [12], 

[13]. The time-delayed features of sEMG were extracted to 

perform the motion assessment [14]. And an artificial neural 

network with time-delayed (TDANN) was established to 

measure the rhythmic clenching movements based on sEMG 

by Hadi Kalani [15]. In addition, the sEMG signals were 

processed (rectifying and smoothing) through the average slide 

window. In [16], two different neural networks with time-

delayed were applied to estimate elbow and shoulder torque 

based on MAV features of sEMG for the exoskeleton. 

However, only less features of sEMG and their corresponding 

time-delayed features were considered in above studies. 

Therefore, much available information may lose for the low-

pass filtering sEMG signal. More available information of 

limb motion should be obtained based on the time-delayed 

signal of sEMG.  

In our previous research, the multiple scale entropy and 

sliding-window were applied to describe correlation between 

the elbow joint and the biceps muscle sEMG signals by 

Zhenyu Wang [17]. In order to improve the estimation 

performance, an improved weighted peaks method was 



presented and a linear-fitting method was applied to measure 

the elbow movement information by Zhibin Song [18]. A 

novel ensemble empirical mode decomposition (EEMD) 

algorithm was proposed by Xuan Song to estimate the 

continuous motion of elbow joint [19]. Songyuan Zhang 

proposed a novel bilateral rehabilitation system with 

coordinative motion of the limbs. And the affected and 

unaffected limbs performed the same movements 

synchronously and independently based on the virtual training 

model [20]. In this paper, to involve more details from sEMG, 

multiple features and some corresponding time-delayed 

features (TF&TDF) are extracted to improve the estimation 

accuracy for motion estimation. Considering execution time 

and estimation accuracy of learning model, Random Forests 

(RF) algorithms is applied to generate the learning model to 

estimate the continuous joint motion. The time-delayed 

features of sEMG are verified that they can perform good 

availability for the motion continuous estimation from the 

experiment results.  

II.  METHODS 

A. Feature selection of sEMG 

In this section, multiple time-domain features including 

IEMG, MAV, WL, ZC, DASDV, SSC and corresponding 

time-delayed features of sEMG are extracted, which are 

calculated through the sliding window function. Actually, 

these features of sEMG were extracted to generate learning 

model. And in this paper, the semgk , 2semgk− , 1semgk− , and 

1semgk+  are defined as the raw sEMG at time k  2k − , 1k − , 

and 1k +  respectively in ( )1Equation ∼ ( )12Equation . And 

i , n , and N  denote the time-delayed coefficient, the times of 

time delay, and the sliding-window width respectively. Hence, 

the time-domain features and corresponding time-delayed 

features of sEMG are described as [21]: 
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where ( )IEMG m  and ( )IEMG m ni− denote the integrated 

absolute value and corresponding time-delayed feature of 

sEMG respectively. 

2) Mean Absolute Value (MAV): 
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where ( )MAV m  and ( )MAV m ni−  denote the mean absolute 

value and corresponding time-delayed feature of sEMG 

respectively. 

3) Zero-Crossing (ZC): 
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where ( )ZC m and ( )ZC m ni− denote the zero-crossing feature 

and corresponding time-delayed feature of sEMG respectively. 

4) Waveform Length (WL) 
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where ( )WL m  and ( )WL m ni−  denote the waveform length 

feature and corresponding time-delayed feature of sEMG 

respectively. 

5) Slope Sign Changes (SSC) 
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where ( )SSC m and ( )SSC m ni− denote the slope sign changes 

feature and corresponding time-delayed feature of sEMG 

respectively. 

6) Difference Absolute Standard Deviation Value 

(DASDV): 
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where ( )DASDV m and ( )DASDV m ni−  denote the difference 

absolute standard deviation feature and corresponding time-

delayed feature of sEMG respectively. 

B. Random Forests 

Random forests (RF) algorithms is used to measure the 

continuous wrist joint movement due to the good ability of 

avoiding over-fitting and anti-noise. The RF consist of a set of 

decision trees. These decision trees are generated based on 

classification or regression kernel function. Considering the 

generalization ability of estimation model, splitting feature 

sequence is selected randomly, and the splitting nodes of 

decision tree each time is selected based on the Gini 

coefficient. In addition, the importance of each evaluation 

feature can be sorted through the RF algorithm. Considering 

the bootstrapping, about 36% of the original training sets will 

not be sampled, which are used as out-of-bag estimate. The 

four-channels features importance from sEMG of wrist joint 



motion will be evaluated by RF algorithms. The M defined as 

number of  decision trees and tM  defined as the number of 

input feature properties randomly are two main parameters for 

a RF. In general, tM  should be far less than M  and the 

parameter M should be set reasonably. The execution time 

and complexity of the RF will be increased if M is set too 

large.  

III. EXPERIMENT AND RESULTS 

A. Experiment setup 

To verify the availability of time-delayed features, three 

healthy subjects (named as A-C, 22-30 years old) were 

recruited. Before the experiment, the subjects should remain 

the upper limb relaxed, thus avoiding the signals offset due to 

muscle tension. The wrist joint motion including flexion and 

extension are considered to perform in this paper. According 

to [22], [23], the flexion/extension motion range of wrist joint 

is -80∼80 . In this work, the flexion/extension motion range 

of wrist joint was defined as -50  ∼ 50 . The wrist joint 

flexion/extension is mainly associated with the Flexor Carpi 

Radialis, Flexor Carpi Ulnaris, Flexor Digitorum, Flexor 

Pollicis Longus, Extensor Carpi Radialis, Extensor Carpi 

Ulnaris, Extensor Digitorum, Extensor Pollicis Longus. As 

shown in Fig.1, Considering the computational complexity, the 

Flexor/Extensor Carpi Radialis and Flexor/Extensor Carpi 

Ulnaris were considered as the main muscles for this paper 

[14].  

 
Fig. 1. The main muscles of wrist joint flexion/extension  

B. Data acquisition and Signal processing 

As shown in Fig.2, the raw sEMG were obtained through 

the superficial electrodes (FREEEMG 300 manufactured by 

Italian BTS Company), and the spacing between reference 

electrodes and measuring electrodes is about 20 mm. The 

device transmits the collected raw sEMG signal by wireless 

transmission. The collected raw sEMG signals were filtered by 

the band-pass filter with bandwidths at 13 ∼ 500 Hz , trapped 

at 50 Hz , and sampling frequency of the sEMG acquisition 

device was set at 2048 Hz .  

 
Fig. 2. The sEMG acquisition system 

To avoiding the slight movement of the upper arm during 

experiments, single channel sEMG acquired by the sEMG 

sensor attached on the upper limb, was insufficient to estimate 

the wrist joint flexor/extensor angle. In this work, 4-channels 

sEMG were obtained and four sEMG sensors were attached on 

the thickest part of the forearm (about 5cm from the elbow), 

forming an equidistant circular configuration respectively in 

Fig.3. The subjects are asked to perform two types wrist 

gesture: flexion ( 0 ~ -50 )/extension( 0 ~ 50 ). Each subject 

was required to perform wrist flexion/extension in the range of 

0 ~ -50 ~ 50 ~ 0 slowly which was defined as a group. A 

group sample is acquired in 15 seconds, and will be performed 

20 times repeatedly for each subject. There were 5 minutes to 

rest between each experiment.  

 
Fig. 3. Electrode placement configurations 

C. Estimation Model 

The structural diagram of the RF based on more details 

features of sEMG is illustrated in Fig. 4. In this figure, the 

training process of the estimation model is described as the 

blue areas and the red areas denote the verification process of 

the estimation model. The time-domain and of sEMG 

including IEMG, MAV, WL, ZC, SSC, DASDV and their 

time-delayed features including TD_IEMG, TD_MAV, 

TD_WL, TD_ZC, TD_SSC, TD_DASDV will be extracted. 

These above features of sENG will be defined as  trainX  that is 



the input variables of RF and the 
preY is defined as the 

estimation angle of RF. 

 
Fig. 4. The structural diagram of the RF based on time-domain and time-

delayed features of sEMG 

The delayed-time variable / 2048t i =  and the 

parameter n  will be set later. And then Using the training data 

set ( )_,train train train angleD X Y=  to establish the learning model 

( )RFH X . The learning model ( )RFH X  is described by: 
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The ( )1,2,...i i = denotes model parameter obtained by 

model training algorithm; The parameter tM  denotes the 

number of possible splitting directions at each leaf node of 

each decision tree. The testX will be applied to test the 

estimation performance of the learning model, and the 

estimation value 
prey  will be described by: 
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In this work, the root mean square deviation ( RMSD ) 

between actual angle and forecasting angle is calculated to 

estimate the performance of learning model. To estimate time 

delay between the actual and forecasting angle. the cross-

correlation is calculated as defined by [21]: 
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where 
y  and 

prey  are denote the mean of actual value and 

the forecasting value of wrist joint motion, respectively. And 

( )r   represents the cross correlation series between actual 

value y and forecasting value
prey , and parameter 

( )1 ,..., 1,0,1,...., 1d dS S = − − − − , where dS  represents the 

number of predicted angle series and f  denotes the sampling 

frequency; 
delay  represents the index of the maximum. The 

seven parameters about the RF in this paper should be set, 

including the number of training samples tN , the number of 

trees in the forest M , the number of input variables randomly 

chosen at each split node tM ,  the time-delayed coefficient i , 

delayed-time variable t , and the times of time delay n . The 

values of these parameters are defined as shown in Table I, 

and the learning model will have good generalization ability 

based on these the values of parameters. 
TABLE I 

 THE OPTIMAL VALUES OF PARAMETERS 

Parameters Values 

i  300 

tN  15000*20 

M  300 

tM  24 

N  512 

t  300 / 2048  

n  2 

IV.  RESULTS 

A. The performance estimation of learning model 

To estimate availability of the time-delayed features from 

4-channels sEMG for motion estimation of continuous joint, 

the machine learning methods RF are used to generate the 

learning model to estimate wrist joint movement. The train 

data of RF involves time-domain features of sEMG and their 

time-delayed features. As shown in Fig.5 and Fig.6, a group of 

the 4-channels raw sEMG and one-channel features data of 

sEMG involving time-domain and time-delay features from 

subject A are descried. 

 
Fig. 5. The 4-channels raw sEMG from subject A 



 
(a) The time-domain features of sEMG 

 
(b) The delayed-time features (n=1) of sEMG 

 
(c) The delayed-time features (n=2) of sEMG 

Fig. 6. Features data of sEMG involving time-domain and time-delay features 

from subject A 

 
Fig. 7. The performance and the error between the actual and measured angle 

of wrist extension 

The performance and the error between actual angle and 

estimated angle of motion estimation model is described. As 

shown in Fig. 7, the blue curve represents the actual angle, and 

red curve represents the measured angle. The black curve 

denotes the error between actual angle and measured angle of 

motion estimation model. The estimation performance of 

TF&TDF-based RF method is much better than the RF’s and 

other methods 
TABLE II 

THE AVERAGE ESTIMATION PERFORMANCE OF EACH LEARNING MODEL 

Methods RMSD delay  

RF 

(TF-based) 
0.1378 0.00048 

RF 

 (TF&TDF-based) 
0.2786 0.00047 

B. The importance comparison of all features based on RF 

Based on experiment results, the time-delayed features 

are verified that they are available for the performance 

improvement applied for the continuous limb joint estimation. 

And the mean RMSD  and 
delay of TF&TDF-based and TF-

based RF methods estimation results of 10 groups test data are 

described in Table II respectively. The average execution time 

of TF&TDF-based RF method is about 0.40s, which is slightly 

longer than that of TF-based RF (0.30s). But the learning 

model of TF&TDF-based RF has better the estimate 

performance than that of the TF-based RF. The mean RMSD  

for the learning model of TF&TDF-based RF, is about half 

than that of the TF-based RF as shown in Table II. And the 

importance of all features during the model generation is listed 

from subject A in Fig. 8. The larger the histogram value 

corresponding to each feature, the more important it is in the 

process of motion estimation. When the value of a feature 

histogram is extremely small, the influence of the feature can 

be ignored. Because RF algorithm can automatically eliminate 

unimportant features and shorten execution time, RF algorithm 

is applied for the basic algorithm in this paper. The results 

show that the time-delayed features of sEMG is available and 

they can be used to perform limb join estimate with better 

performance. Therefore, the learning model of TF&TDF-

based RF is available and also can perform well in motion 

estimate with good generalization ability. 

 
(a) The importance of all features for channel 1 and channel 2 

 
(b) The importance of all features for channel 3 and channel 4 

Fig. 8. The importance of all input features based on RF 



V. CONCLUSIONS 

In this work, the availability based on the multi-time-

delayed features from sEMG for the continuous estimate of 

limb joint was verified. Considering execution time and 

measure accuracy, the RF based on the TF&TDF of sEMG 

was used to generate the learning model for the continuous 

joint motion. The experiment results demonstrate that the 

estimation performance and robustness of the RF based on the 

TF&TDF work better. But the estimate performance may be 

affected when the wrist joint of subjects performs rapidly due 

to the reason that the features are described with a fixed width 

sliding window function. To solve above problem, the 

adaptive width sliding window function can be used in the 

future study. In general, the speed of the wrist joint motion in 

daily life is slow. According to mean RMSD  and 
delay from 

Table II and Fig. 7, multiple time-delayed features are good 

for estimating the continuous upper limb joint motion with 

high performance and the RF based on TF&TDF is available 

and also can perform well in motion estimate.  
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