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 Abstract – During the Minimally invasive vascular interven-
tion surgery, deformable guidewire tracking is still a challenging 
task due to background clutter of the image and the complex 
motion of the target. However, existing researches about 
guidewire tracking for robot-assisted endovascular catheteriza-
tion system are still limited. In this paper, scale-adaptive mean-
shift method is adopted in endovascular interventional robotic 
system to detect the position of the guidewire tip. To evaluate the 
performance of this algorithm in guidewire tracking, two 
interventional experiment using the rigid model of cerebral 
vascular were designed. The experimental results show that the 
ratio of frames with the center location error less than 5 pixels is 
97.6% in these two tasks, and the average processing speed for 
each frame is 1.24ms. The result shows that this algorithm with 
high precision and real-time has the potential to apply in 
endovascular interventional robotic system. 
 
 Index Terms – Guidewire tracking; scale-adaptive mean-shift; 
endovascular interventional robotic system 
 

I.  INTRODUCTION 

 Vascular interventional surgery (VIS) is a surgical 
technique that limit the size of incisions and so lessen wound 
healing time, associated pain and risk of infection [1]. During 
the procedure, the surgeon inserts the catheter in the femoral 
artery. Then, under fluorescent image, the surgeon manipulates 
the guidewire to guide the catheter move to the lesions and 
inject drugs or put therapeutic device (stent balloon) [2]. For 
the VIS, accurate positioning of the guidewire with respect to 
the vasculature is a prerequisite for a successful procedure [3]. 
However, due to the narrowness of the blood vessels and the 
complexity of the vasculature, guidewire tracking is difficult, 
especially during procedure [4]. This result prolongs the 
operation time, and long-term exposure of doctors and patients 
to radiation will affect their health. 
 There have been many studies on the tracking of catheters, 
guidewires and other endovascular tools through different 
means so far. Electromagnetic (EM) trackers, which are placed 
motion-sensor on the tip of the catheter with high spatial 
resolution, high sensitivity, and low noise, have been used by 
many researchers for tracking the tip of guidewire. A 3D EM 
tracking system in conjunction with fluoroscopy and 
angiography has shown that the use of this system has potential 
to apply in complicated endovascular procedures and reduce 

the radiation exposure [5]. Based on fusion framework, the 
information from customized catheter with multi-EM sensors 
have been combined to estimate guidewire shape and position 
within the vasculature. This provides continuous guidewire 
position information without using contrast agents and fluoros-
copy frequently [6]. 
 Visual-based tracker use image processing techniques in 
X-ray fluoroscopy or MR image to visualize the current 
position of endovascular tools inside the patient vasculature in 
real time. Correlation filter algorithm [7], machine learning 
algorithms [8], or combinations of different algorithms [9] 
have been achieved high tracking accuracy. These algorithms 
establish the model of guidewire and update this model online 
using machine learning algorithm to obtain the robust tracking 
performance. In addition, several MR compatibility tools for 
tracing have been developed, such as using the negative small 
paramagnetic rings or magnetite mixtures, resonant 
radiofrequency (RF) coils, Hall probes, and Faraday sensors 
[10]. 
 Via current studies have achieved acceptable accuracy and 
real-time performance, these tracking methods still have 
several limitations. Due to the soft and fine structure of the 
guidewire, sensor used in tracking would difficult to apply to 
conventional catheters. visual-based tracking methods focus on 
describing catheter model, due to the special structure of the 
catheter increases the difficulties and cannot meet accuracy, 
robustness, and real-time requirements. As a result, guidewire 
tracking is still a clinical challenge in endovascular 
intervention surgery.  
 In this paper, visual-based scale-adaptive mean-shift 
algorithm was adopted to track the guidewire to reduce the X-
ray exposure and improve surgical safety [11]. Surgeon can 
mark the object of interest (guidewire, catheter and tools) 
during the procedure, the algorithm will establish the target 
model in real time. In the next image frame, through the 
established target model, this algorithm can iterate the new 
position of the target quickly. Two interventional tasks using 
the vascular phantom with different path were designed to 
evaluate the tracking accuracy and real-time performance of 
the algorithm. 

The remainder of this paper is organized as follows. The 
experiment platform was introduced in section Ⅱ. The detail of 



 
Fig. 1 Master-slave interventional robotic system  

 
scale-adaptive mean-shift method was given in section Ⅲ. We 
used two intervention tasks with different path to evaluate the 
performance of the algorithm. Section Ⅳ present the 
experimental results. Finally, section Ⅴ concludes this paper. 

II. EXPERIMENT PLATFORM 

 Fig.1 presents the block diagram of the master-slave 
interventional robotic system which designed by our research 
team [12]-[16].  
 The master device measures the translation and rotation of 
the catheter and provide the force feedback from slave side to 
the manipulators. The two degrees of freedom linear and 
rotational motion of the catheter for master side is measured 
by the laser mouse’s image sensor. Haptic interfaces based on 
magnetorheological fluid (MRF) provides the surgeon with 
real force feedback to improve the safety of the procedure. 
 The slave device is used to manipulate the patient catheter 
movement, push-pull and rotation. The clamping mechanism is 
controlled by a relay which can operate the spring mechanism 
to clamp the catheter with different size. The movement of the 
catheter (push-pull and rotation) is controlled by two stepping 
motors through the ball screw and pulley mechanism. Load 
cell was used in slave side to measure the proximal force 
during the surgery. 
 The control terminal can process the motion signal from 
the master side, the force feedback signal from the slave side 
and the visual feedback signal. The visual-based tracking 
method can be used in control terminal to provide guidewire 
positioning for interventionalists. In addition, visualized data 
will be provided to the surgeon to improve the safety of the 
operation. 

III.  SCALE-ADAPTIVE MEAN-SHIFT ALGORITHM  

A. Standard Mean-shift Tracking Method   
 According to classical mean-shift method, the target is 
described as a multivariate kernel density estimate in origin-
located feature space 
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 In the next frame, the target candidate at location y is mo-
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 Let x i be the pixel locations and *
1...{x }i i n=  be the pixel 

locations of the target model centred at zero, where n  be the 
number of pixels. The grayscale-image space of the selected 
area is evenly divided, and then a grayscale histogram 
composed of m  equal regions is obtained. The probability of 
the feature {1,..., }u m∈ is estimated by the target histogram as 
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where ( )k x  is kernel function. *(x )ib  denote the histogram 
interval of the pixel located in *

ix and u  is the index of color 
histogram. δ  is the Kronecker function, which is used to 
detect whether the gray value at the pixel *

ix  in the target area 
belongs to the color unit u  in the histogram. C is the 
normalization constant so as 
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 In the current frame, the center position y  of the target 
candidate is obtained by search area located at center position 

0y  in last frame. The pixel locations of search area are 
represented by 1...{x }

hi i n= , where the hn  be the pixel number of 

search area. Using the same kernel function ( )k x , the 
probability of the target candidate is 
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where h  is scale parameter, hC  is a normalization constant. 
The similarity function is used to measure the difference 
between the target model 1...{ }u u mq =  and the target candidate 

1...{ (y)}u u mp = . Using the Hellinger distance to calculate the 
similarity, which is given by  
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is the Bhattacharyya coefficient between q  and p(y) . 
Maximizing the Bhattacharyya coefficient [p(y),q]ρ  is 
equivalent to minimizing the Hellinger distance. The new 
position of the target from the 0y  in the last frame to the 1y  in 
current frame is iteratively moved via maximizing similarity of 
target model and target candidate. 
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and ( ) ( )g x k x′= −  is the derivative of ( )k x . 

B. Scale Estimation 
 Let us assume that the scale change of the target in 
successive frames is isotropic. Let 1 2( , )Ty y y= , 1 2( , )T

i i ix x x=  
denote pixel locations and N  be the pixel number in the 
image. The target is described in the image by an ellipsoidal 
region *1 2 *2 2

2 2

( ) ( ) 1i ix x
a b

+ <  with an isotropic kernel ( )k x , restricted 

by a condition ( ) 0k x =  for 1x ≥ . The probability of the 
feature {1,..., }u m∈  is estimated by the target histogram as 
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where C is a normalization constant. Let 1...{x }i i N=  be the pixel 
locations of the target candidate in the current frame Using the 
same kernel function ( )k x , the probability of the feature 

{1,..., }u m∈  in the target candidate is 
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 The parameter h  is the scale of the target candidate. Let 1n  
be the pixel number of the target model, and hn  be the pixel 
number of the target candidate with a scale h  in the ellipsoidal 
region; then 2

1hn h n= . According to the definition of Riemann 
integral, we obtain: 
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 Thus 2
1

hC C
h

≈ , For any  two values 0h , 1h , we obtain 

1 0

2
0
2

1
h h

hC C
h

≈ .  

 The similarity between the target model and the target 
candidate is calculated by the Bhattacharyya parameter. Using 
the approximations above for hC  we get 
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Thus, to maximized [p(y, ),q]hρ , center position 0y  in last 
frame iteratively move to the new location 1y , changing its 
scale to 1h .  
 Let us denote 
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Finally, the new position y  and new scale h  is obtained by 
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C. Mean-shift with scale estimation  
 To prevent the tracking error generated by scale 
estimation, we check the consistency of forward-backward 
scale change. The forward-backward check compares the 
estimated scale from frame 1t −  to t  and t  to 1t − .This 
validation ensure that the target scale will not grow indefinitely 
and enable the tracker to recover from erroneous estimate. The 
algorithm mainly consists of the following steps. 
 Input: Target model q , initialization position 0y and 
initialization target size 0s . 



 
Fig. 2 Two intervention tasks using a rigid model of cerebral vascular 

 

 Output: Position yt  and scale th . 
 For each frame {1,..., }t n∈ : 
 1) Compute 1 1(y , )u t tp h− −  using Eq. (10). 
 2) Update position yt  according to Eq. (20). 
 3) Update scale th  according to Ep. (21). 

 4) If 2
1y yt t ε−− ≤  or the maximum step of iteration 

t maxIter> , go to the next step 5), else go to the step 1). 
 5) If ( )t slog h > Θ , then the target scale changes, go to 
the next step 6) to perform the forward-backward scale check, 
else the scale estimation is 1 1(1 )st t ts hsγ γ− −= − + . 
 6) Use the step 1) to 4) to compute the backward scale 

backh  from frame t  to 1t − . If ( * )t back clog h h > Θ , then the 
forward-backward scale changes are inconsistent, the scale 
estimation is 1 1(1 )st t default t ts s h sα β α β− −= − − + + , where 
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 The above algorithm was compiled using visual studio 
2017 with OpenCV 4.0 library and tested on DELL G5 5587 
(Intel Core i7-8750H CPU, 16G RAM). The parameter values 
in the algorithm are as follows: 0.1ε = , 15maxIter = , 

s 0.05Θ = , 0.1cΘ = , 1 0.1c = , 1 0.1β = , 1 0.3γ = , where defaults  
is the scale from first frame initialization. 

IV.  EXPERIMENTAL RESULTS 

 We designed two intervention tasks using a rigid model of 
cerebral vascular with different paths to evaluate the perfor-
mance of the tracking method running on the endovascular 
intervention system. The length of vascular model is about 
25cm, which include one vascular intersection, one heman-
gioma and four blood vessels bending. Catheter move from 
right to left, and the path are shown by Fig.2. We use the 
master-slave interventional robotic system designed by our lab 
to manipulate the catheter. The average speed of catheter 
movement in these tasks is 0.75cm/s.  
 In the beginning of the task, we mark the catheter tip to be 
the interest box, and the method will track this area on the 
following sequence. For each frame, the algorithm will track 
the target location and write the coordinates of the target into  

 
Fig. 3 Tracking performance in task A 

 

 
Fig. 4 Tracking performance in task B 

 

the txt file. In addition, we manually mark the catheter tip to be 
the ground truth box for each frame of the mission. This 
ground truth box file can be used to verify the performance of 
the algorithm. 
 The mainly challenge in the task is that tracking error 
caused by blood vessel contour to guidewire interference and 
deformation due to contact between the catheter and the vessel 
wall. In addition, blurring due to catheter movement is also 
likely to cause tracking failure. Fig.3 and Fig.4 shows part of 
tracking performance in task A and B. We mark the catheter 
tip at the first frame, and during the following sequence, to 
face the deformation and the background clutter, the adaptive 
scale mean-shift algorithm can track it at the real time. 
 We use the success and precision rate for quantitative 
analysis, and the results are shown by success plots and 
precision plots [17]. Precision plot is one of evaluation metric 
using center location error, which is defined as the average 
Euclidean distance between the center locations of the 
bounding box (created by tracker) and the manually labeled 
ground truth box. In Fig.5, the x axes is the center location 
error, and the y axes is the ratio of number of frames whose 
location error less than threshold. Success plot is another 
evaluation metric using bounding box overlap. Let denote tr  
be the tracked bounding box and ar  be the ground truth box, 



 
Fig. 5 Algorithm performance described by precision plots 

 
Fig. 6 Algorithm performance described by success plots 

 
the overlap is counted by 

t a
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S
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
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where   and   represent the intersection and union of two 
boxes respectively, and   is the number of pixels in the box. 
In Fig.6, the x axes is the overlap threshold, and the y axes is 
the ratio of number of frames whose overlap large than 
threshold. 
 We use center location error less than 5 pixels and overlap 
large than 50% as a standard for evaluating the performance of 
the tracking method. As shown in the Fig.11, the proportion of 
frames with the center location error less than 5 pixels is 
97.60%, and the proportion of frames with the overlap large 
than 50% is 93.84%. In addition, the average processing speed 
for each frame is 1.24ms.  

V.  CONCLUSION 

 In this paper, the visual-based tracking method has been 
utilized to assist the operator in guidewire positioning. 
Experimental results illustrated that this method with high 
precision and real-time has the potential to apply in 
endovascular interventional system. However, guidewire 
tracking will face low resolution and background clutters in 
fluorescent images during actual surgical procedures. In the 
next study, using this method at in vitro experiment should be 
taken into account. 
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