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Abstract - In the field of rapidly developing 

endovascular technique and technology, accurate 

assessment of surgical operation is essential for improving 

the efficiency of endovascular surgery and the 

performance of endovascular surgery robots. Existing 

methods of assessment have taken into consideration of a 

variety of indicators such as path length of operation, 

operation time and so on. The indicators that have been 

considered all come from surgeon's operation itself. 

However, the characteristics of specific patients’ blood 

vessels are not considered for objective assessment. So in 

this paper, operating difficulty of different blood vessels 

was described for operation through the aortic arch by 

machine learning k-means models. Then clustering results 

were verified with external and internal metrics. Based on 

this study, difficulty levels of blood vessels can be taken as 

an important indicator for surgeons' endovascular 

operation evaluation in the future research. 

 

Index Terms – Endovascular surgery; Objective 

assessment; Description of vascular operation difficulty; 

Unsupervised machine learning 
 

I.  INTRODUCTION 

Endovascular surgery is widely adopted in various 

cardiovascular and cerebrovascular diseases on account of its 

advantages such as small trauma, simple operation, accurate 

interventional site and so on [1]. In this field, objective 

assessment of the surgeons ' skill is essential for evaluating the 

training effect of novice surgeon and further improving the 

efficacy of vascular interventional surgery[2]. In addition, the 

design and application of medical robotic systems for 

endovascular surgery also begin to appear and gradually 

develop [3]-[8], with previous research evaluating potential 

outcome benefits from application of robotic systems [9]-[10]. 

In recent years, there are lots of studies on evaluating skill 

of interventional surgery [11]-[14]. In the early days, 

assessment of surgical performance was aimed at evaluating 

the training effect of novice surgeons [15]. At that time, 

assessment relied on subjective qualitative evaluation by 

experienced experts or supervisors [16]. Later, structured 

human grading was proposed, such as Objective Structured 

Assessment of Technical Skills [17] which is a kind of 

qualitative scoring systems. These methods were the gold 

standard for performance evaluation at the time, even though 

they were somewhat subjective. Then simulator was used to 

extract some metrics like fluoroscopy times and the total 

procedure and simulator-recorded errors to evaluate surgical 

performance [18]. Using video fluoroscopy sequences was 

regarded as a method for skills assessment and the total path 

length correlated well with manually scored GRS with 21 

participants of varying experience [19]. Non-dimensional jerk, 

number of sub-movements, average sub-movement duration 

and spectral arc length were proposed for assessment [20]-

[21]. A framework was proposed for automated and objective 

performance evaluation by measuring contact force between 

catheter and the tissue [22] and movement pattern of operator 

at different skill levels [23]. Machine learning means have 

been applied for automatic assessment of physician 

performance in robotic-assisted minimally invasive surgery 

using metrics like path length, completion time, speed, depth 

perception, curvature and smoothness. A number of kinematic 

features (e.g. average speed，dimensionless jerk, average 

acceleration, procedure time) and the distance between the 

catheter tip to blood vessel wall are introduced to assess [24].  

In the existing methods for evaluating surgical operation, 

various indicators are adopted, including path length, 

operation time, collision force, average velocity, acceleration, 

etc. However, these indicators are all extracted from the 

operation of surgeon. Blood vessels of different ages, genders 

and diseases patients are highly different. The condition of the 

blood vessels in a particular patient, such as the diameter of 

the blood vessels, the angle between the vessels at the 

bifurcation and the number of blood vessels, have significant 

influence on the surgical operation. Therefore, we should 

consider vascular conditions as a metric to evaluate surgical 

performance, which is where the research needs to be 

improved. 



In this paper, a vascular-difficulty classification model is 

established. Firstly, twenty different aortic arch vascular 

models are designed and features of vascular maps in the 

model are extracted, including path length, node number, 

bifurcation vessel diameter, etc. After that, unsupervised 

machine learning is employed to cluster vascular maps by 

these features and divide them into three categories. Finally, 

the clustering results are verified. Ten surgeons are asked to 

rate the operation difficulty of different blood vessel maps. 

Then, external and internal metrics of clustering effect 

evaluation in sklearn library are used to evaluate the results, 

which shows that the clustering results are effective and 

objective and proves that the Clustering Model is able to be 

used for grading vascular difficulty level. 
 

Ⅱ. METHODS OF SIMULATION 

In this section, the method of vascular path feature 

extraction is introduced. And the algorithm of unsupervised 

clustering model k-means is demonstrated and the method to 

evaluate the clustering results is presented. 

A. Feature extraction of blood vessels 

The establishment of vascular difficulty description model 

requires features of vessels. Our research will focus on 

operation of crossing the arch of aorta. Therefore, we will 

design multiple aortic arches for classification model and get 

vascular images.  

In endovascular surgery, the shape of blood vessels varies 

from different patients. Different anatomical shapes of blood 

vessels lead to different operating difficulties in endovascular 

surgery. Referring to surgeons' experience, if distance between 

target vessel and descending aorta is farther, the operation of 

this target vessel is more difficult. In addition, the vessel 

radius and inclination angle of the target vessel at bifurcation 

of aortic arch are also important factors affecting doctor's 

operation. Number of vascular bifurcation in vascular pathway 

also affects operation difficulty. Therefore, according to the 

factors affecting vascular operation difficulty in actual surgery, 

eligibled features of the aortic arch were selected. 

According to images of the blood vessel, canny operator 

will be adopted to extract the contour of blood vessels based 

on OpenCV library. Centerline of blood vessels will be 

extracted by means of morphological corrosion and expansion. 

After obtaining the vascular contour and centerline, AutoCAD 

software will be used to extract vascular features according to 

these two kind of image, including path length, number of 

vessel bifurcations, vessel diameter at the bifurcation point, 

angle of vessel centerline at the bifurcation point, distance 

between the two bifurcations and other indicators. These 

indicators will be used for unsupervised training in the 

following step. 

B. Unsupervised learning: k-means clustering 

In medical industry, there is no gold standard for grading 

the difficulty of blood vessels. It is inaccurate for surgeons to 

judge the difficulty grade only with the naked eye and 

experience. Therefore, this study will adopt the unsupervised 

learning method to cluster the difficulty of blood vessels 

according to the extracted characteristics of vessels. 

Unsupervised learning is the process of solving various 

problems in pattern recognition based on training samples of 

unknown (unlabeled) categories. This paper will adopt the k-

means algorithm in unsupervised learning. K-means clustering 

is a vector quantization method, deriving from signal 

processing, which is a common cluster analysis method of 

data mining. And it is the most popular algorithm using 

iterative optimization techniques.  

The K-means algorithm is to put N data points of an I-

dimensional space into K clusters. The mean vector 
( )km of 

each cluster parameterize this cluster. Data points will be 

represented by {
( )nx } in which superscript n goes from 1 to 

the counting value of data points N. Each vector x has I 

components ix . It will be an assumption that the space where 

x in is a actual space. We will assume that there have a metric 

that defines distance between points, for instance 
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To begin K-means algorithm (equation (1)), the K cluster 

means {
( )km } are initialized in one way or another, such as to 

make the value of random. The K-means is a two-step iterative 

algorithm. In the first step of assignment, calculate the 

distance between each data point and each seed cluster center 

and assign each data point to the mean vector nearest to it. The 

second step is to update, the clustering center will be 

recalculated according to the existing means of the data points 

in the clustering . 

  K-means algorithm is shown as follows: 

1) Initialization. Make the value of K cluster means {
( )km } 

to random. 

2) Assignment. Calculate the distance between each data 

point and each seed cluster center and assign each data 

point to the mean vector nearest to it. We express our 

guess for the cluster 
( )nk  that the point 

( )nx  belongs 

to by 
( )nk


. 
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Another alternative representation of assigning points to 

each cluster center are indicator variables 
( )n

kr . When 

we do assignment, 
( )n

kr  is set to one if mean k is 

nearest to data point 
( )nx ; otherwise 

( )n

kr  is set to zero. 



 
Fig.1. One of aortic arch models. 

 

  
 

 
Fig.2. The processing of the aortic arch images. (a) The binary image, (b) The 

contour, (c) The centreline. 
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3) Update. The model means parameters are adjusted to 

match the sample means of the data points that they are 

responsible for. 
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where ( )kR  is the total responsibility of mean k, 
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4) Repeat steps 2) and 3) to assign and update until the 

assignment do not change. 
 

After clustering results are obtained, clustering availability 

needs to be evaluated. The evaluation methods of clustering 

effectiveness can be roughly divided into two types [25]. In 

regard to external metrics [26]-[27], the clustering results will 

be compared with a reference model after the completion of  

clustering. On the contrary, internal metrics directly examine 

the clustering results without using any reference models [28]. 

The following of metrics will be used in following study. CH 

(Calinski-harabaz Index), the smaller the covariance of the  

  
 

Fig.3. Vessel diameter (a) and angle (b) measuring by AutoCAD. 
 

data within the categories and the larger the covariance 

between the categories, the clustering result the better. So in 

this way, the calinski-harabasz score will be higher. RI (Rand 

index)[29] calculates the similarity between sample predicted 

value and real value, and value range of RI is [0, 1]. The rand 

index needs to be given the actual category information C, 

assuming that K is clustering result. And a represents the 

elements logarithm of same classes in C and K, whereas b 

represents it of different classes. After that the rand index is: 

                 

2
samplesn

a b
RI

C


  ,                (6) 

where 2
samplesn

C  is the total element logarithm which may be 

composed in data set. RI is within value range of [0, 1]. The 

larger the value, the stronger consistency of the clustering 

result with the actual value. 

Homogeneity refers to the fact that each cluster contains 

only a single class of samples. Integrity (Completeness) refers 

to the same category samples are classified into the same 

cluster. It is one-sided to consider the uniformity or 

completeness alone, so the weighted average v-measure of the 

two indicators is introduced. If 1  , the measure is more 

integrated. 1  , the measure is more uniform. 

                 
(1 ) h c

v
h c







  


 
,             (7) 

where h stands for homogeneity, c stands for completeness. 

 

Ⅲ. EXPERIMENT 

A. Feature extraction 

Twenty different aortic arch models are designed, as shown 

in Fig.1. Blood vessel images are acquired from models by 

camera. After that, grey processing, binarization and threshold 

segmentation are performed on the blood vessel images. 

Finally, we extract the contour of the aortic arch with canny 

operator and obtain the images of vascular centreline by 

morphological closed operation and thin operation. Results as 

shown in Fig.2. 

In the next part, we use AutoCAD software to extract 

features of aortic arch. AutoCAD is a ltd. CAD (computer - 

aided design) and drafting software application. It can be 

adopted directly to read the curve length, angle, diameter and 

other information in vascular contour and centreline.  



 
Fig.4. Vascular pathway selected for experiment using k-means model. 

 

 
Fig.5. Important ranking of different features of blood vessels. 

 

Therefore, we use it to obtain the vascular features 

mentioned in the previous section from the vascular contour 

and the centreline, composing the vascular feature data set. 

The process of obtaining vessel diameter and angle from this 

software is as shown in Fig.3. Each aortic arch has 8 vascular 

paths, and there are twenty aortic arcades of different shapes. 

Through feature extraction, we can obtain 9 different features 

composing feature vectors of each vascular path. A total of 

160 feature vectors in the data set will be used for 

unsupervised training in the next step. 
 

B. Data preprocessing, clustering training and evaluation 

The extracted features may be irrelevant or redundant, 

which increases the time of model training and reduces the 

accuracy of the model. In addition, collinearity features which 

are highly correlated with each other, will lead to poor 

generalization ability of data sets due to their high variance 

and low interpretability. Therefore, before unsupervised 

training, feature data are pre-processed and feature selection is 

carried out. 

We sort the importance of features using the random forest 

method and adopt the identify-collinear function of feature 

selection in Python to calculate the correlation between 

various features. Combining results of importance ranking and 

correlation detection of features, we eliminate features with 

low importance and high correlation. 

After feature selection, feature data is standardized for 

improving performance of this algorithm. Unsupervised k- 

 
 

Fig.6. Feature correlation coefficient thermal diagram. 
 

TABLEⅠ 

 FEATURES WITH CORRELATION GREATER THAN 0.8. 

Corr_feature 1 Corr_feature 2 Corr_value 

Branch number Intersection angle3 0.922269 

Branch number Branch diameter3 0.934286 

Intersection angle3 Branch diameter3 0.841193 

 

means method is adopted to train the data set and we set k 

value as 3. After repeated iterative operations, the clustering 

results are obtained. To verify the clustering results, ten expert 

doctors are asked to grade the difficulty of vascular path 

operation. The Calinski - Harabaz Index metrics/Rand Index 

metrics/Homogeneity/Completeness/weighted average of the 

V - measure metrics are considered to analyse clustering 

results. 

Finally, the k-means model is used to determine the 

operation difficulty of a specific vascular pathway within the 

aortic arch. As shown in Fig.4, the vascular pathway marked 

red is selected for experiment. Obviously, doctors cannot 

accurately judge the operation difficulty of this vascular 

pathway by observing it with naked eyes. So k-means model 

in this paper is adopted to judge its operation difficulty. 

Feature vector of this vascular pathway is obtained by feature 

extraction method above. The clustering centre coordinate 

value obtained by k-means model in the previous step is used 

to calculate the distance between the clustering centre and the 

feature vector. Then feature vector is assigned to the nearest 

clustering centre to obtain the final operation difficulty of this 

vascular pathway. 
 

Ⅳ. RESULTS AND DISCUSSION 

A. Feature selection results 

Before the training, 9 kinds of vascular features are 

extracted and processed. The importance of each feature to the 

classification is obtained by the random forest method.  



 
 

Fig.7. Scatter Diagram of K-means clustering results (k=3). 
 

Importance ranking is shown in the Fig.5. 

Afterwards, the identify-collinear function of feature 

selection in Python is used to calculate the correlation between 

various features. The correlation coefficient threshold is set as 

0.8 to screen out features with high correlation, as shown in 

the TABLE I. The correlation of features is visualized by 

thermal diagram, as shown in the Fig.6. The legend is the 

correlation coefficient. The redder the color, the greater the 

correlation between features. 

Feature importance sorting results show that the 

contribution of Branch number expressing the characteristics 

of vascular path is only 0.006805. Contribution of Branch 

diameter3, intersection angle3, Branch diameter1, intersection 

angle1 expressing the characteristics is not more than 0.1. 

According to the correlation form, correlation between 

Branch number and Branch diameter3, intersection angle3 is 

more than 0.9. Features with high correlation lead to the 

redundancy. Combining the above two results, we decided to 

eliminate Branch number and Branch diameter3, intersection 

angle3 these three vascular features for feature selection. 

B. Clustering results and verification 

After data standardization processing, k-means clustering 

training is carried out. The training results are shown in Fig.7, 

where the black center is clustering center and three labels are 

three classes. In addition, Intersection angle1 and path length 

are the features with the highest contribution degree. So the 

two features are selected as horizontal and vertical coordinates 

respectively. 

The evaluation of clustering results based on external and 

internal measurement is shown in the following TABLE II. 

According to the scatter diagram of clustering results, we 

find that difficulty level of vascular path is divided into three 

levels with good effectiveness. The selected clustering center 

is reasonable. In addition, the CH score was 114.58 which 

indicating that the covariance within the categories of 

clustering was small, while the covariance between the  

TABLE II 

EVALUATION METRICS FOR CLUSTERING RESULTS 

Evaluation metrics Results 

Calinski-Harabaz Index 114.5854 

Rand Index[0, 1] 0.79506 

Homogeneity 0.70388 

Completeness 0.69741 

V - measure 0.70064 

 

categories was large. In other words, vessels with similar 

characteristics are well grouped together and closely related. 

RI value range is [0, 1]. And our RI value of 0.795 is close to 

1, indicating the high similarity between sample predicted 

value and the real value. Considering completeness of 

homogeneity, the result is 0.7 which indicating that each 

cluster contains only samples of a single category in the 

clustering result and samples of the same category are 

classified into the same cluster with high degree. All of the 

above evaluation results show that the clustering effectiveness 

reaches a high level and can be applied to the grading 

application of vascular difficulty level. 

Experimental results show that operation difficulty of 

vascular pathway in Fig.4 is at the third level. This result can 

be used as an indicator to evaluate the operation of doctors in 

future research. 

Ⅴ. CONCLUSIONS 

In the Endovascular surgery, evaluation of a surgeons ' 

operation procedure is essential. However, the current research 

in this field is still immature, and the most important thing is 

that we have not been considering the individual differences of 

each patient’s vascular. Patients with different ages, genders 

and diseases have significant differences in blood vessels, 

which is also one of the important factors affecting surgeons' 

operation.  

Therefore, this study aimed at the deficiency of surgery 

operation evaluation and analyzed the operation difficulty of 

different blood vessels. The purpose of this paper is to add this 

metric in the future study on the evaluation of surgeons' 

operation and make the evaluation more scientific and 

reasonable. Firstly, a variety of different aortic arch vascular 

models were designed to prepare training data for the 

clustering model. Next, multiple features of vascular pathways 

were extracted using AutoCAD software. The random forest 

method and the method of calculating feature correlation were 

used to select features. Then, based on the results of feature 

selection, k-means unsupervised model was used to cluster 

different blood vessels. We got three different types of vessels. 

Finally, we evaluated the effectiveness of k-means clustering. 

Various evaluation metrics, both internal and external, were 

adopted. The results showed that the clustering results are well 

and can be employed to further evaluate the operation of 

interventional surgery doctors. 

This research makes up for the lack of patient vascular 



information in the evaluation of surgeons’ interventional 

operation. However, this research is preliminary for operation 

through the aortic arch. The complete vascular information in 

interventional surgery can be comprehensively evaluated in 

future studies. In addition, this study only preliminary analyze 

one of the important evaluation indexes for evaluating 

surgeons' operation. Operation of doctors across the aortic 

arch in combination with other evaluation indicators will be 

evaluated in the following. Furthermore, the operation skills of 

expert doctors will be quantified to facilitate the evaluation of 

interventional surgery training. And it will be make possible 

for the interventional surgery robot to learn the skills of the 

surgeon. 
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