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Abstract
Interventional surgery is widely used in the treatment of cardiovascular and cerebrovascular diseases, and the development of
surgical robots can greatly reduce the fatigue and radiation risks brought to surgeons during surgery. In this paper, we present a
novel interventional surgical robot which allows surgeons to fully use their operating skills during remote control. Fuzzy control
theory is used to guarantee control precision during the master-slave operation. The safety force feedback control is designed
based on the catheter and guidewire springmodel, and the force-position control is designed to decrease the potential damage due
to the control delay. This study first evaluates the force-position control strategy using a vascular model experiment, and then an
in vivo experiment is used to evaluate the precision of the surgical robot controlling the catheter and guidewire to the designated
position. The in vivo experiment results and surgeon’s feedback demonstrate that the proposed surgical robot is able to perform
complex remote surgery in clinical application.

Keywords Vascular interventional surgery . Robot-assisted surgery .Master-slave control system . “In vivo” experiment

1 Introduction

According to the World Health Organization (WHO) report in
2015, cardiovascular and cerebrovascular diseases like coro-
nary artery disease are among the top causes of death world-
wide. As the death caused by these diseases are rising,

vascular interventional surgery is widely used for cardiovas-
cular and cerebrovascular diseases due to its small trauma and
quick recovery time [1]. In traditional vascular interventional
surgery, surgeons have to perform the surgery for hours, stand-
ing beside the patient and position the catheter and guidewire
on the target location under the guidance of a digital reduction
shadow angiography (DSA) system. The surgeon’s fatigue
and physiological tremors affect the success of the surgery,
and long radiation exposure poses a risk to the surgeon’s
health. Therefore, researchers have become increasingly inter-
ested in vascular interventional robotic systems that allow
surgery to be performed outside the operating room using
remote control [2].

In the last 20 years, several robotic systems have been
developed [3]. Stereotaxis Inc. (St. Louis, MO, USA) devel-
oped the NIOBE® remote navigation system that can navigate
the catheter via a magnetic field in 2002 [4]. Its slave side
controller provides three degrees of freedom including push-
ing, pulling, rotating, and bending of the catheter tip. The
CorPath® 200 robot system, developed by Corindus
Vascular Robotics (Waltham, MA, USA) in 2005, can control
catheters to grip and rotate using friction wheels [5]. The
Sensei Robotic System developed by Hansen Medical in
2006 has a specialized vascular intervention propulsion mech-
anism for the catheter and guidewire [6–8]. It is a typical wire-
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drive robotic system and has been widely applied in clinical
trials. Catheter Precision (Ledgewood, NJ, USA) designed the
Amigo™ robot system in 2008, which provides remote con-
trollers with push buttons on the master side, and a multi-
freedom steerable catheter controller on the slave side [9].

In addition to commercial products, universities worldwide
have also provided robotic systems for vascular interventional
surgery. In our lab’s previous research, a novel catheter
inserting robotic interventional surgery system was presented,
consisting of a coaxial force sensor structure that can measure
the resistance of a catheter using push force during operations
[10–16]. Other university labs have also presented robotic
systems such as the 3-DOF cardiac ablation catheter operating
system presented by Jun Woo Park at Korea University [17].

Although such robotic systems have been widely studied,
the existing vascular intervention surgery robot still has com-
mon weaknesses such as lack of force feedback and no coop-
eration between the catheter and guidewire.

During a traditional vascular interventional surgery, the
surgeon manipulates the catheter and guidewire based on
two types of feedback—visual feedback and force feedback.
Visual feedback provides the location and catheter tip direc-
tion to the surgeon, and force feedback provides the informa-
tion of collision and torque to the surgeon. These two types of
feedback construct the operation habits of the surgeon [18,
19]. An experienced surgeon can perform surgery efficiently
and safely depending on the operation habits [20]. Due to the
size of the catheter and guidewire, the force sensor and feed-
back are limited and are commonly replaced by visual assist
only in practical application, which will cause the absence of
surgeon’s operation habits during the remote surgery [21].

To simplify the difficulty of the structure, the existing ro-
botic system can only send either catheter or guidewire during
the operation. As in traditional vascular interventional surger-
ies, the operations require the coordination between catheter
and guidewire. Surgeons need the guidewire to choose the
target vessel in narrow places and guide the catheter through.
Robot systems sending a single catheter or guidewire are of
little clinical significance. Therefore, cooperation robot be-
tween the catheter and guidewire is needed in interventional
medical research.

Based on these previous studies, our lab developed a novel
remote-controlled vascular interventional robot [22, 23]. This
robot can provide force feedback for catheter and guidewire. It
is remotely controlled by the surgeon and the surgeon can
operate catheter and guidewire at the same time. However,
due to its bulky design, it cannot be applied to actual surgical
needs. In order to apply our study to the actual surgical envi-
ronment, we present a novel master-slave surgical robot and
evaluate its operation performance in this paper.

The remainder of this paper is structured as follows: in
Section 2, a surgery robot system is introduced that co-
operates the catheter and guidewire. The control strategy

based on the surgeon’s surgical technique is designed for the
collaborative operation, including the force-position control
strategy. In Section 3, we evaluate the force-position control
strategy through a human body vascular model and remote
control precision through an in vivo experiment. The discus-
sion is presented in Section 4. Finally, we outline our conclu-
sions in Section 5.

2 Materials and methods

2.1 Robot module overview

The routine operation procedure of catheter and guidewire in
an interventional surgery is shown in Fig. 1 [24]. The
guidewire is responsible for finding the advancement path in
the narrow blood vessels and providing guidance for the cath-
eter. The surgeon determines the state of the catheter
guidewire in the blood vessel by the frictional resistance be-
tween the catheter guidewire and finger. The tactile feedback
generated by the friction assists the surgeon, along with the
visual feedback of the X-rays. This operating habit ensures the
safety of the interventional procedure. At the same time, all
the surgeon’s operations can be simplified into a combination
of the following three operating habits:

(1) Pushing and retracting: to advance and retreat the cathe-
ter or guidewire in the blood vessel;

(2) Rotation: to change the direction of the catheter or
guidewire in the blood vessel;

(3) Cooperation of push and rotation: to achieve the posi-
tioning of the catheter or guidewire in key areas.

However, some commercial surgical robots do not follow
the surgeon’s operating habits when designing the control
side. For example, the Sensei robot developed by Hansen
Medical uses a control pad to control the forward/backward
of the catheter and the rotation of the tip. The advantage of this
is that the joysticks are convenient for the surgeons to get
started, but surgeons will lose the hand feeling of operating
the catheter and guidewire in the operating room, and the
accumulated operational skill cannot be exerted. Moreover,
during cardio or cerebral vascular interventional surgery, the
surgeon needs to operate the catheter and guidewire to pass
through narrow blood vessel branch collaboratively.
According to our communication with surgeons in coopera-
tive hospital and observations of actual surgery, we found that
at this time, the surgeon’s operating skills will greatly deter-
mine how long the surgery lasts. Under these circumstances,
control side of the vascular interventional robot system needs
to be designed with two degrees of freedom: a linear cannula
motion degree of freedom and a rotational degree of freedom.
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The operation requires that these two degrees of freedom be
performed simultaneously as a real catheter or guidewire for
the surgeon to complete a vascular interventional procedure.

The entire robot system consists of two parts: the
master side and the slave side. In order to improve
the efficiency and success rate of interventional surgery,
the interventional robotic system should imitate the ac-
tual operation of doctors and repeat their operation
skills. The master side is the control part of the robot
system. The design purpose of the master side is to
record the surgeon’s movement and transport the move-
ment to the slave side. The master side contains the
master controller and the master control system cabinet.
It is constructed outside the operating room to prevent
the surgeon from being exposed to radiation. Surgeons
can use the main controller and control system cabinet
for surgery. The slave side is the operating part of the
robot system. The slave side is designed to replicate the
surgeon’s movement from the master side. The slave
side movement is performed by the slave manipulator.
The manipulator has sliding units to control the move-
ment of the catheter and the guidewire. It is connected
to the master side through a shielded twisted pair cable.
The proposed robot diagram of the complete system
structure is shown in Fig. 2. This section introduces
the system architecture of the interventional robot from
both the master and the slave side.

2.1.1 System master side design

The master side contains the master controller and the master
control system cabinet. The master controller we used
consisted of two identical haptic interaction devices
(Geomagic® Touch, 3D Systems Corp, Rock Hill, SC,
USA). The haptic device has two functions: capturing opera-
tional data from the surgeon’s motion and generating force
feedback to the surgeon. As in traditional minimally invasive
vascular procedures, the surgeon uses both hands to manipu-
late the catheter and guidewire. Two haptic devices are de-
signed as catheter controllers and guidewire controllers.
Both controllers are capable of recording the linear and rota-
tional motion of the surgeon by using a motor encoder. A
torque motor in the haptic device can generate force feedback
based on force sensor feedback on the slave side. The two
haptic devices are tied together with a sleeve to simulate the
relationship between the catheter and the guidewire in tradi-
tional minimally invasive surgery, giving the surgeon a vivid
operational experience. The control system cabinet is the cen-
tral processing unit of the entire robot system. The purpose of
the cabinet is to capture control signals from the master con-
troller and control the slave manipulator to replicate the same
motion on the slave side, and also receive force feedback from
the slave side and transfer the data to the master controller and
computer screen. The complete structure of the master side is
shown in Fig. 3.

Fig. 2 Diagram of the complete system structure. The surgeon uses controllers to give instructions. The slave manipulator follows the surgeon’s
directions and operates the catheter and guidewire to complete the surgery. The system master side and slave side communicates through shielded wires

Fig. 1 Routine operation
procedure of interventional
surgery. From step 4 to step 5 is
the main procedure of
interventional surgery
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2.1.2 System slave side design

The slave side robot is the operating unit of the robot system.
The prototype structure of the slave side manipulator is shown
in Fig. 4a. The robot has a linear motion platform and two
manipulator units. The robot units are mounted on the plat-
form and each unit is connected to a separate brushless dc
motor via a pulley. The two manipulator units are a catheter
manipulator and a guidewire manipulator, respectively. When
the surgeon moves the main catheter controller or guidewire
controller in a linear direction, the corresponding dc motor on
the linear motion platform moves a precise amount in the
same direction. This allows the surgeon to push and drag the

catheter and guidewire remotely outside the operating room.
We fixed the grating scale on the side of the platform as a
calibration feedback to measure the specified linear position
of the catheter and guidewire manipulator.

The catheter manipulator and the guidewire manipulator
consist of two parts: the upper disposable module and the
lower control module. Our former published papers have de-
tailed descriptions of the slave manipulator working principle
[25, 26]. The prototype internal structure of the upper and
lower module is shown in Fig. 4c [22].The upper module of
the manipulator is shown in Fig. 4b, which contains the
clamping unit and rotational unit. By the cooperation of the
rotational unit and the clamping unit, the surgeon can control

Fig. 4 The prototype structure of the slave side, including the linear
movement platform and the catheter and guidewire manipulator. a The
prototype structure of the slave side. b The upper disposable clamping

module of the catheter and guidewire manipulator. cThe internal structure
of the slave manipulator [22]. d The control module of the catheter and
guidewire manipulator

Fig. 3 The complete structure of themaster side. a Surgeonmaster side operation display. b Systemmaster side controller and console interface c System
master side control system cabinet

Med Biol Eng Comput

Author's personal copy



the rotation of the catheter and the guidewire by transmitting
the angle of the master controller to the manipulator. The
lower module of the manipulator is shown in Fig. 4d, which
contains the rotation driving motor and force detection sensor.
The force detection sensor is used to measure the proximal
force of the catheter and the guidewire during surgery. As
shown in Fig. 4c, if the catheter or guidewire collides with
the blood vessel during operation, the feedback force will
push the slide rail toward the force sensor, which will generate
force signal back to the master control system cabinet. The
detail precision evaluation results of the force detection struc-
ture are shown in our former published paper [22]. For the
safety of in vivo experiment, the gear position of the upper and
lower module of the manipulator was moved forward, which
facilitates the disassembly and disinfection of the upper dis-
posable module.

As the robot master and slave side are being built,
the surgeon is able to perform the push, drag move-
ment, and rotation motion at the master side, and repli-
cate the movement at the slave side. Meanwhile, the
proximal force signal of catheter and guidewire can be
detected and fed back to the master side. This robot
system design not only enables the surgeon to complete
the operation outside the operating room but also pro-
vides a vivid situation for the surgeon to fully use their
operating skills learned in traditional surgery.

2.2 System control strategy

2.2.1 Fuzzy control PID design

After the robot system is constructed, the control strat-
egy is designed for the surgeon to remotely operate the
robot. The block diagram of the system control strategy
is shown in Fig. 5. For our robots, we used an indus-
trial computer as the processing core of the system.
After the motion signal operated by the surgeon is col-
lected, the programmable multi-axis controller (PMAC)
inside the computer sends the signal to the slave side
according to the programmed command. The controller
also has the function of receiving the slave side position

for closed-loop motion control and limiting operations.
Although the PMAC controller has multiple functions,
the control accuracy cannot fulfill the standard in prac-
tical applications. For example, in the initial operation
phase of low speed and high acceleration and the decel-
eration phase at high speed, the master-slave tracking
effect was still limited by the lack of single PID (pro-
portional–integral–derivative) parameter control [27].
Considering the high-precision requirement of the robot
control system, the control system is based on fuzzy
PID closed-loop control.

The basic PID control strategy is as follows:

u tð Þ ¼ Kpe tð Þ þ K i ∫
t

0
e tð Þdt þ Kd

de tð Þ
dt

ð1Þ

As shown in Fig. 6, u(t) is the control signal and e(t) is the
control error. For different speeds, different error intervals are
set for control. The displacement error and change of displace-
ment error are used as the inputs to the fuzzy control. The
control signal thus includes three terms: the P-term (which is
proportional to the error), the I-term (which is proportional to
the integral of the error), the D-term (which is proportional to
the derivative of the error). The controller parameters are pro-
portional gain Kp, integral gain Ki, derivative gain Kd. The
implementation of the fuzzy control is performed using the
following procedures: measure the current output of displace-
ment in the dc motor and calculate the error e(t) and error
change ec(t); fuzzify the inputs using the rule base; transform
the fuzzified inputs into a fuzzy inference using the min-max
operation; and defuzzify the information using the center of
gravity method to convert to fuzzy control. Next, the
defuzzified information consisting of Kp, Ki, and Kd is trans-
mitted to the PID controller and used as the input control
signals to adjust the output signal. As shown in Table 1, seven
different error intervals are set for control. They are negative-
big (NB), negative-medium (NM), negative-small (NS), zero
(Z), positive-small (PS), positive-medium (PM), and positive-
big (PB). According to the different errors, ec(t) is set to seven
different intervals. The setting of the interval for ec(t) and e(t)
are the same, which presents 49 different model choices in this
method.

Fig. 5 Block diagram of the
system control strategy.
Demonstrate the system control
and feedback process
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2.2.2 Calibration of force feedback safety threshold
and force-position control

For the force feedback compensation, we designed an early
warningmechanism: if the force feedback value is greater than
a specified threshold, the control system decreases the follow-
ed precision of the master-slave interaction. The threshold
value is determined by the guidewire and the catheter. For
the robotic system described in this paper, the guidewire was
a 0.75-mm diameter loach guidewire. For an average human,
blood pressure should be 80 to 120 mmHg. The maximum
stress that human vessels can bear is related to the systolic

pressure. When the guidewire touches the vessel wall, the area
of contact can be considered a small rectangle where one side
length is always the diameter of the guidewire, 0.75 mm; the
other side length is 0.75 to 1.5 mm. If the contact area is S,
systolic pressure is P, the maximum safety pressure F can be
given by:

F ¼ SP ð2Þ

The calculated range of F is 0.006 to 0.009 N. In order to
ensure the safety of the entire surgical procedure, the mini-
mum value 0.006 N is used as a safety threshold. The surface
coating of the guidewire is Teflon, with a static friction coef-
ficient μ of 0.014. The maximum pressure FM can be calcu-
lated by the following formula:

F ¼ μFM ð3Þ

The result of FM is 0.429 to 0.643 N. It should be noticed
that in this system, the result of the measured force feedback is
at the end of the guidewire, and the guidewire is a flexible
material that will inevitably decay during the whole process of
transmission of force. Therefore, in order to ensure safety, it is
necessary to reduce the influence of such attenuation on the
measurement results. The guidewire can be modeled as a long
spring with an elastic modulus of 193GPa. An elastic coeffi-
cient K can be obtained, given by:

K ¼ ESc
L

ð4Þ

where SC is the cross-sectional area; L is the length of the
guidewire in the aorta, which is in the range of 0.4 to 0.5 m;
and E is the elastic modulus. Taking SC as the circumferential
area of the guidewire, the range ofK is calculated to be 170.44
to 213.05 N/m. According to the relationship between the
elastic coefficient, and the spring force and deformation, we
obtain the deformation force Fd as follows:

Fd ¼ K �ΔL ð5Þ

Due to the limitations of catheters and blood vessels, the
amount of deformation of the guidewire ΔL is quite small.

Table 1 Fuzzy control rules of the robot remote control

e(t) ec(t)

NB NM NS Z PS PM PB

Kp NB PB PB PM PM PS Z Z

NM PB PB PM PS PS Z NS

NS PM PM PM PS Z NS NS

Z PM PM PS Z NS NM NM

PS PS PS Z NS NS NM NM

PM PS Z NS NM NM NM NB

PB Z Z NM NM NM NB NB

Ki NB NB NB NM NM NS Z Z

NM NB NB NM NS NS Z Z

NS NB NM NS NS Z PS PS

Z NM NM NS Z PS PM PM

PS NM NS Z PS PS PM PB

PM Z Z PS PS PM PB PB

PB Z Z PS PM PM PB PB

Kd NB PS NS NB NB NM NM PS

NM PS NS NB NM NS NS Z

NS Z NS NM NM NS NS Z

Z Z NS NS NS NS NS Z

PS Z Z Z Z Z Z Z

PM PB PS PM PS PS PS PB

PB PB PM PM PM PS PS PB

Fig. 6 Fuzzy PID controller flowchart
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When the change of guidewire bending is less than 2.5°, the
range of Fd should be 0.136 to 0.212 N. According to the
range of the elastic force and the safety threshold obtained
above, it could be dangerous when the force detected from
the tip of the guidewire is 0.217 to 0.507 N or more.
Similarly, the force feedback safety threshold of the 5F cath-
eter we use is 0.315 to 0.55 N or more.

Based on the above calculation, we take 0.35 N as the force
feedback threshold of the guidewire and 0.45 N as the force
feedback threshold of the catheter. The complete control strat-
egy is given as follows:

XM tð Þ ¼ FS tð Þ=K ð6Þ

u tð Þ ¼ Kpe tð Þ þ K i ∫
t

0
e tð Þdt þ Kd

de tð Þ
dt

� jXM tð Þj ð7Þ

where XM is the decrease amount of the following precision,
and FS is the value of proximal force feedback from the slave
side force sensor. Taking the guidewire as an example, we
divided the operating condition into the following four cases:

(1) When the value of guidewire proximal force feedback is
between 0 and 0.05 N, the slave manipulator will follow
the master side movement without a precision decrease.

(2) When the value of guidewire proximal force feedback is
between 0.05 and 0.35 N (0.45 N for the catheter) and
increasing (FS (t) >FS (t−1)), the slave manipulator will
follow the master side movement after the precision de-
crease is removed.

(3) When the value of guidewire proximal force feedback is
between 0.05 and 0.35 N (0.45 N for the catheter) and
decreasing (FS (t) <FS (t−1)), the slave manipulator will
follow the master side movement after the precision de-
crease is added until the following error is under
0.05 mm.

(4) When the value of guidewire proximal force feedback is
above 0.35 N (0.45 N for the catheter), the slave manip-
ulator will stop following the master side movement and
will alert the surgeon to retreat the guidewire.

This force-position control strategy is designed to improve
the safety of surgery during the master-slave operation.
During the master-slave surgery, the inevitable delay problem
will cause operational lag for the operation, which means that
when the slave side guidewire or catheter collides with the
vessel wall, the surgeon operating at the master side cannot
quickly feel the force feedback and retreat. Under this circum-
stance, the control system will decrease the following preci-
sion of slave to reduce the collision damage. After the surgeon
realizes the force feedback and decreases the force by
retreating or rotating the catheter or guidewire, the control
system will adjust the slave side to gradually catch up with
the master side to guarantee the accuracy of the operation.

3 Evaluation experiments and results

After the robot system and software design was completed, we
performed two experiments to verify the actual operating per-
formance and control precision of the robot: a vascular model
experiment and an in vivo experiment using the robot system.

The vascular model experiment applied a simulation vas-
cular model as the experimental environment. The vascular
model can be highly realistic in simulating the blood vessel
environment in the body, including blood pressure and heart
rhythm. Meanwhile, enough lubricant is added to the blood
vessel model to simulate the real friction of a blood vessel
wall. Therefore, it can provide a more authentic verification
effect for the surgical robot. The vascular model experiment is
mainly to evaluate the ability of the force-position control
strategy when guidewire or catheter collides with the vessel
wall.

The animals used in the animal experiments in this paper
are small pigs. The animal experiment is mainly to evaluate
the ability of the surgical robot to control the catheter and
guidewire to the designated position of the animal blood ves-
sel through master-slave control. For the robot design, it is
evaluated by the precision of the control and the theoretical
value. For clinical application, it is evaluated by whether the
experiment conforms to the surgeon’s operating habits. In ad-
dition, the outcome of the animal experiment determines
whether it can be used in the clinical trial [28].

3.1 System performance evaluation and results
of the vascular model

The process of simulated surgery is illustrated in Fig. 7. The
surgeon operates the master side surgeon control platform.
The master sends the detected action to the controller. With
this information, the controller controls the slave side to oper-
ate the catheter and guidewire. The catheter is inserted from
the femoral artery insertion entrance and pushed to the ascend-
ing aorta. The operation and force feedback data from the
insertion started at the femoral artery to the ascending aorta
was collected and analyzed.

The experiment consists of using the robot to make the
catheter and guidewire pass through the aortic arch. In this
operation, the catheter and guidewire insertion distance is ap-
proximately 450 mm and the operating time is approximately
20 s. This experiment verifies the feasibility of using a robot
for vascular intervention and using experimental data to verify
that the proposed force-position control strategy can adjust the
master and slave side tracking accuracy according to different
feedback force magnitudes and trend conditions after detect-
ing the force feedback signal from the slave side. To ensure
repeatability, five volunteers participated in the experiment
and each completed ten operations.
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Figure 8 illustrates the master-slave force-position control
strategy motion following the results of the vascular model
experimental process. It can be seen that since the catheter
has greater stiffness than the guidewire, the feedback force
detected during the experiment is relatively larger. The oper-
ator performs multiple retrace adjustments based on the force
feedback information during the experiment. Based on these
results, it can be found that the master-slave following preci-
sion dynamically adjusts according to the force feedback re-
sult. It can be seen that due to the influence of the master-slave
operation delay, the operator cannot immediately adjust the
attitude of the catheter and guidewire after detecting the force
feedback from the slave side. At this time, the control system
automatically reduces the master-slave side following accura-
cy according to the obtained force feedback information to
reduce the possibility of damage caused by collision with
the blood vessel. When the operator detects the force feedback
at the master side and adjusts the position of the catheter and
guidewire to a safety range by retracting and rotating, the

system gradually compensates the precision error during the
following master-slave motion. The process is similar to the
PID tuning process. As shown in Fig. 8, the errors of dynamic
tracking performance are between − 0.5 and 2.4 mm at the
appropriate speed. When the feedback force does not exceed
the safety threshold, the maximum error of the master-slave
motion is under 0.5 mm.

3.2 Performance evaluation and results of the in vivo
experiment

In order to verify whether the surgical robot can meet the high-
precision standard in an actual surgical operation, we per-
formed in vivo experiments using a pig as the patient.
Although the vascular model can provide a simulated environ-
ment that simulates blood pulsation, it is different from an
actual in vivo environment. In order to enable the surgeon to
adapt to the robot’s operation more quickly and to better eval-
uate the accuracy of the robot master-slave control, we

Fig. 7 Vascular model
experiment environment.
Including the starting position
(the femoral artery) and the target
position (the ascending aorta)

Fig. 8 Force-position control vascular model experiment result. a Catheter motion following result. b Guidewire motion following result
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removed the control strategy of adjusting the master-slave
following accuracy based on the force feedback data. In the
in vivo experiment, the master-slave control strategy is fuzzy
PID control, and the linear and rotation operations performed
by the surgeon at the master side are accurately replicated to
the slave side. The surgeon uses the force interaction control-
ler at the master side to feel the force feedback, and at the same
time, the force feedback line graph can be observed on the
computer real-time feedback interface.

The operating room environment of the in vivo exper-
iment is shown in Fig. 9a. The experiment was conducted
at Beijing Tiantan Hospital. The slave side manipulator
system was fixed to the side of the operating bed by a
mechanical arm. The tilt angle of the robot and the posi-
tion above the operating bed can be adjusted by the robot
arm. In vivo experiments were mainly performed by a
surgeon with years of experience in neurosurgery.
Several neurology interns also operated the robot after
the main experiment had completed. The master side of
the robotic system was placed outside the operating room.
As shown in Fig. 9b, the surgeon controls the master side
controller to operate the experiment. The surgeon uses the
master controller to operate the catheter and guidewire to
move from the blood vessels of the experimental pig’s
thigh to the left and right common carotid artery.

The in vivo experiments reach several locations in
animal’s blood vessels multiple times. In this paper,
the right subclavian artery angiography process is taken
as an example to evaluate the control performance of
the robot. During the experiment, the catheter started
at the external iliac artery, passed the descending aorta
and the aortic arch to reach the right subclavian artery.
The duration of the operation was approximately 80 s.
The X-ray film and angiographic result of the right

subclavian artery of the experimental pig are shown in
Fig. 10.

The in vivo experimental results of reaching the right
subclavian artery are shown in Fig. 11. Results show that
the dynamic performance of the system is stable during
the experiment. The following error of the catheter linear
tracking performance is between 1.5 and − 2.0 mm, the
average error is 0.18 mm. The following error of the
guidewire linear tracking performance is between 1.3
and − 1.8 mm, the average error is 0.11 mm. According
to the surgeon’s feedback, this error is within the accept-
able range during the surgery. The error of the rotation
movement is between 2.4° and − 1.9°, the average error

Fig. 9 The in vivo experiment environment. a Operating room environment of the in vivo experiment. b Surgeon controls the master side controller to
operate the experiment

Fig. 10 Part of the angiograms results of the in vivo experiment. a The X-
ray image of the pig’s right subclavian arteries. b The angiogram of the
pig’s right subclavian arteries
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is 0.17°. According to the surgeon’s feedback, this error is
also within the acceptable range during the surgery.

4 Discussion

As shown in Figs. 8 and 11, the performance of the proposed
interventional robot and the effects of the control strategy are
investigated herein. This paper focused on solving two prob-
lems of interventional surgery robot research. Firstly,
transplanting the surgeon’s surgical skills to the master-slave
surgery robot structure, so that surgeons can rely on their
experience of past surgeries to operate the master side to
achieve rapid adaptation, which improves the stability of the
surgical operation. Secondly, the fuzzy PID is used for master-
slave control, and the surgical operation is divided into multi-
ple cases for PID control to ensure the accuracy of the robot
remote control can meet the requirements during the opera-
tion. Thirdly, a force-position control strategy is proposed to
enable force feedback data to be added to the closed control
loop as an operational threshold when necessary, reducing

possible blood vessel collision damage and improving surgi-
cal safety.

Compared with our previous study results [26], the robot
system is lighter and the master-slave control error is smaller.
However, the system still has some short-comings to improve:
Firstly, the master and slave structures of the robot are isom-
erism, although the operation mode is similar but not exactly
the same, and the master side can only operate at a smaller
distance than the slave. The surgeon has to disconnect the
master-slave connection when reaching the master side oper-
ation limit, and readjust the position of the master side before
controlling the slave side to move further. Secondly, the accu-
racy of the proximal force detection is limited. Although the
force feedback sensor we used has a high accuracy of 0.001 N,
since the force measuring device is located inside the catheter
and guidewire controller, mechanical vibration and unavoid-
able mechanical friction are encountered during the force mea-
surement. At the same time, the catheter and guidewire have a
bending condition in some experiments, so that the detection
force accuracy is affected. Thirdly, the setting of the force
threshold can be more precise in the force-position control.

Fig. 11 Linear movement, rotational movement result, and the
displacement error of catheter and guidewire from the in vivo heart
experimental procedure. a Linear movement result and the following
error of catheter. b Linear movement result and the following error of

guidewire. c Rotational movement result and the following error of
catheter. d Rotational movement result and the following error of
guidewire
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The threshold force range was estimated by human blood
pressure and the contact area between the guidewire and the
blood vessel. In order to improve the threshold accuracy, a
high-precision sensor can be designed for actual measure-
ments in subsequent animal experiments.

5 Conclusion

This paper proposed a novel interventional surgical robot and
evaluated its control performance through a vascular model
experiment and an in vivo experiment. The results demon-
strate that the proposed surgical robot is able to perform com-
plex remote surgeries in clinical application. This paper pro-
vides several foundations for our future research in surgical
robots:

(1) We proposed control strategy for a surgical robot which
allowed surgeons to fully use their operating skills during
remote control.

(2) The fuzzy PID was used to guarantee the control preci-
sion and the safety force feedback control was designed.

(3) A preliminary force-position control was designed to de-
crease the potential damage due to the control delay.

For further study, we will focus on the problems that surgeon
feedback after several in vivo experiments. Firstly, a specially
designed master controller is necessary for our robot.
According to surgeon’s feedback, although they can remotely
control the catheter and guidewire in the same way as in the
operating room during surgery, the redundancy degree of free-
dom still gives them a lot of operational incompatibility.
Secondly, a surgeon needs to extract the guidewire from the
patient’s body after the catheter reached the affected area and
prepare for angiograms. The current control strategy of extracting
guidewire costs too much time. Our next step is to develop a
relevant control method which can automatically control the
withdrawal of the guidewire, improve the safety of the operation,
and the convenience of the remote surgery. Finally, several
in vivo experiments do not fully evaluate the operational perfor-
mance of the robot. With the assistance of the cooperative hos-
pital, we will seek for more opportunities for animal and clinical
experiments, evaluate and improve the performance of the robot
through statistics and actual feedback from surgeons.
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