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A CNN-based prototype method of unstructured surgical state
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Yan Zhao1
& Shuxiang Guo1,2

& YuxinWang1
& Jinxin Cui1 & YouchunMa1 & Yuwen Zeng1

& Xinke Liu3
& Yuhua Jiang3

&

Youxinag Li3 & Liwei Shi1 & Nan Xiao1

Received: 13 September 2018 /Accepted: 5 June 2019
# International Federation for Medical and Biological Engineering 2019

Abstract
Performance of robot-assisted endovascular surgery (ES) remains highly dependent on an individual surgeon’s skills, due to
common adoption of master-slave robotic structure. Surgeons’ skill modeling and unstructured surgical state perception pose
prohibitive challenges for an autonomous ES robot. In this paper, a novel convolutional neural network (CNN)-based framework
is proposed to address these challenges for navigation of an ES robot based on surgeons’ skill learning. An operating action
probability estimator is proposed by integrating a two-dimensional CNN, with which the features of a surgical state image are
extracted and then directly mapped to the action probability. A one-dimensional CNNwith multi-input is developed to recognize
the guide wire operating force condition. An eye-hand collaborative servoing algorithm is proposed to combine the outputs of
these two networks and to control the robot under a closed-loop architecture. A real-world ES robot is employed for data
collection and task performance evaluation in laboratory condition. Compared with the state of the art, the CNN-based method
shows its capability of adapting to different situations and achieves similar success rate and average operating time. Robotic
operation performs similar operating trajectory and maintains similar level of operating force with manual operation. The CNN-
based method can be easily extended to many other surgical robots.

Keywords Unstructured surgical state perception . Surgeons’ operating skill learning . Autonomous surgical robot . Deep
convolutional neural network

1 Introduction

Endovascular surgery (ES) is widely employed to treat throm-
bus, tumor, embolism, and so on, due to its advantages com-
pared with traditional thoracotomy and craniotomy, such as
less bleeding, fewer complications, small trauma, and quick
recovery [1]. An ES robot is considered to be a promising
technology to further improve the operation accuracy, effi-
ciency, and safety [2]. The current studies on the ES robot
mainly focus on the master control device with haptic feed-
back [3–8], the mechanism and control of the slave manipu-
lator [9–11], the active catheter [12–15], the sensing system
for surgical state acquirement [9, 16–19], and the forewarning
[20–22]. Unlike an autonomous robot system for surgical
tasks on static rigid tissue [23] or soft tissue [24] with rigid
instruments, current ES robot systems always adopt a master-
slave paradigm [25, 26], as shown in Fig. 1. As a result, exe-
cution of surgical tasks with such ES robot is entirely con-
trolled by the surgeon and limited to an individual surgeon’s
skills.
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Surgeons acquire their skills through a long period of study
in the form of explicit learning and training in the form of
implicit learning [27]. During ES, the surgeon estimates the
spatial relationship between the guide wire and vessel wall in a
digital subtraction angiography (DSA) image. Meanwhile, the
surgeon recognizes the operating force condition of the guide
wire according to haptic sense. Then, the surgeon makes de-
cision of the operating action with their surgical experience. In
this paper, the action decision-making procedure is defined as
the surgeons’ skills. The surgical state information shown in
the DSA image is dynamic and non-structured. The inference
procedure from the surgical state to the operating action is
complex and highly non-linear. In addition, given the large
variability of patients’ tissues and the difference between sur-
geons’ operating methods, explicit modeling of the surgeons’
skills is practically limited or even impossible.

Machine learning (ML) methods have been employed for
surgeons’ skill learning, as well as autonomous surgical robot
[28], such as recurrent neural networks (RNN) [29], deep
neural network (DNN) [30], Gaussian mixture model
(GMM) [31], and hidden Markov model (HMM) [32–34].
However, these methods have limitations due to the fact that
their inputs are the coordinate position of the gripper [29], the
base position, the rotation vector, the tool position [30], and
guide wire tip motion data obtained by an electromagnetic
position sensor [31–33]. These methods do not have the ca-
pability of understanding the unstructured surgical state im-
age. A method combining non-rigid registration and GMM
was proposed by Yang et al. [35], which is the state of the
art for an autonomous ES robot. Despite the fact that it has the
capability to adjust new vascular anatomy, only the vessel
centerline is mapped to the actions but not the vessel contour
morphology. Moreover, this method is limited by generating a
fixed action sequence from a fixed starting point.

A deep convolutional neural network (CNN) provides a
promising way to deal with the challenges of unstructured
surgical state perception and surgeons’ skill learning. Deep
CNN has demonstrated its outstanding capability of under-
standing a raw pixel image in image classification [36],

diagnosing a tumor, playing games, even robot grasping,
and so on. It successfully overcame the challenge of an enor-
mous search space and the difficulty in evaluating board po-
sitions and moves in the game of Go [37]. A deep CNN-based
model successfully learned the control policies for seven Atari
2600 games from image input and surpassed a human expert
on three of them [38]. A novel method was proposed by
employing three-dimensional CNNs for automated pulmo-
nary nodule detection from volumetric computed tomography
(CT) data [39]. Further, deep CNNs have been successfully
used to map the visual input to control commands for robot
grasping [40–42]. A deep Q-Network (DQN)-based system
was proposed with the capability of autonomously learning
robot controllers from image input without any prior knowl-
edge of configuration [43]. However, to our knowledge, there
is no reported study on an autonomous ES robot directly with
image input based on deep CNN methods.

In this paper, a CNN-based framework is proposed for
unstructured surgical state perception and surgeons’ skill
learning for an ES robot. A 2-D deep CNN is developed for
unstructured surgical state perception with image input, which
is defined as the action probability estimator. A multi-input
one-dimensional (1-D) deep CNN is proposed to recognize
the operating force mode of the guide wire, which is defined
as the operating force mode recognizer. Then, an eye-hand
collaborative servoing algorithm is proposed to combine those
two networks for action execution under closed-loop control.
Demonstrations of two kinds of representative surgical tasks,
including vessel branch passing and obstacle passing, are col-
lected under laboratory settings for network training.

2 Methodology

2.1 Overview of the CNN-based framework

During the clinical ES procedure, the surgeon applies pushing,
pulling, and rotating actions on the guide wire end outside the
sheath to deliver the guide wire tip to the target area along the
vessel lumen. They make the action decision by estimating the
surgical state that is presented mainly by two kinds of infor-
mation: the visual information in the DSA image and operat-
ing force on their hands. They estimate the spatial relationship
between the guide wire and vessel contours according to the
visual information, while ensuring the surgery safety by
adjusting the operating force. The spatial information between
the guide wire and vessel contours is unstructured and dynam-
ic because of their flexible and deformable physical property.
Although non-rigid registration and GMMmethods were pro-
posed [35], only the vessel centerline is mapped to the actions.
The important information including vessel contour morphol-
ogy and operating force was not taken into account. For oper-
ating force mode recognition, a threshold method was adopted

Fig. 1 Schematic diagram of the robotic-assisted ES

Med Biol Eng Comput



in Jian et al.’s research [21]. But, during the procedure that the
guide wire is continuously inserted into the vessel lumen, the
interaction force between the guide wire body and vessel wall
is complicated and changeable. So, it is hard to classify the
operating force mode by simply setting a safety threshold of
the operating force that is always detected at the guide wire
end.

A CNN-based framework is proposed in this paper as
shown in Fig. 2. It mainly consists of two phases: phase I is
data collection and phase II is automatic operation. In phase I,
the master-slave robot is used for data collection, which is
used to train the network for automatic operation. A human
surgeon controls the slave robot through the master robot to
manipulate the guide wire for specific surgical tasks, while the
actions detected by the master robot and operating force de-
tected by the slave robot, as well as images detected by the
camera under laboratory conditions or by the DSA device
under clinical conditions, are recorded as demonstration data.
In phase II for automatic operation, the slave robot is con-
trolled by the trained models (i.e., the action probability esti-
mator and operating force mode recognizer). In each close
control loop of automatic operation, the current surgical state
image is taken as the input of the trained action probability
estimator and the guide wire operating force is taken as the
input of the trained operating force mode recognizer. The eye-
hand collaborative mechanism infers the optimal action ac-
cording to the output of these two learning models. Then,
the inferred optimal action is executed by the slave robot to
operate the guide wire for surgical tasks.

Four preconditions are set for this work. (1) The vessel
contour is visible in the medical image. In clinical condition,
the vessel contour can be obtained from the DSA image. (2)
Camera images are used as a substitute for the DSA image in
experimental condition for training data collection and evalu-
ation experiments. The vessel contour and catheter contour are

extracted using a Canny operator in the preprocess procedure.
For the DSA image in clinical condition, the textures could be
extracted with specific extracting and tracking methods for a
medical image [44–49] in the preprocess procedure. (3) The
target point of the catheter tip in certain tasks is set by human.
(4) The guide wire operating force detected by the force sensor
inside the slave manipulator is used to represent the surgeons’
operating force on the guide wire.

2.2 Action probability estimator

An action probability estimator is proposed to predict the
probability distribution of the candidate actions among given
action spaces based on the current surgical state image. In
order to make accurate predictions, the action probability es-
timator should have the capability not only to extract the fea-
tures of spatial relationship between the guide wire and vessel
contour but also to deduce the extracted features to the action
probability. The action probability estimator is developed
based on CNN, as shown in Fig. 3. The input of the network
is the preprocessed current surgical state image, and the output
is the estimated action probability distribution.

Firstly, the contour of the moving guide wire and the vessel
wall in the surgical state image is extracted using a Canny
operator. The surgical tasks could be represented by a marking
target area and the vessel centerline from the starting area to
the target area in the image.

Then, an 8-layer CNN is used to extract the features in the
preprocessed images as shown in Fig. 3. It was proven that
using more kernels with smaller size could achieve better per-
formance than using less kernels with larger size [48]. At each
convolutional layer, the kernels are used to sweep over the
input (i.e., the output of the previous layer) step by step to
extract a stack of higher-level features. A kernel with trained
parameters detects a certain kind of meaningful feature

Fig. 2 Diagram of the proposed CNN-based framework
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contained in the local information. Then, a bias term is added
and a non-linear activation function is employed. The 2-D
convolutional layer can be formulated as (1):

hli x; yð Þ ¼ σ bli þ ∑
k
∑
u;v

hl−1k x−u; y−vð ÞWl
ki u; vð Þ

� �
ð1Þ

where hli and hl−1k are respectively the ith 2-D feature map in
the lth layer and the kth 2-D feature map in the previous layer,

Wl
ki∈R

2 is the kth 2-D convolutional kernel mapping hl−1k tohli;
hli x; yð Þ, hl−1k x−u; y−vð Þ, and Wl

ki u; vð Þ represent the element

values with (x, y) being the coordinates of hli and (u, v) being
the coordinates ofWl

ki, b
l
i is the bias term, σ(⋅) is the non-linear

activation function, and the rectified linear units (ReLU)
(σ(a) = max(0, a)) is used in this paper.

After the first, second, and fifth convolutional layers, max
pooling layers are respectively adopted to further reduce the
feature dimension. Max pooling is a form of non-linear
downsampling operation. It is beneficial for avoiding
overfitting during training the network by reducing the scale
of parameters. Max pooling is performed over the whole fea-
ture map, so that the max pooled feature represents the global
feature [30]. Surgeons’ skills are mainly represented by the
change procedure of the spatial relationship between the guide
wire and vessel wall contained in the texture feature of the
medical image sequence. So, the features reflecting surgeons’
skills remained after every max pooling layer.

After the third max pooling layer, the feature maps are
flattened and then connected with two fully connected layers.
The fully connected layers are used to fit the non-linear rela-
tionship between the low-dimensional feature maps and the
action probability distribution. The fully connected layer can
be expressed as (2):

hf ¼ σ bf þW f hf −1� � ð2Þ

where hf − 1 is the input feature vector of the fth fully connected
layer, hf is the output feature vector,Wf is the weight matrix, bf

is the bias term, and σ(⋅) is the activation function ReLU.

By denoting the neuron vector in the output layer by h0, the
number of the neurons of h0 equals to the number of actions in
the given candidate action space At[a0, a1, a2, a3, a4] (i.e.,
pushing forward, pushing forward synchronously with rotat-
ing, rotating, pulling back synchronously with rotating, and
pulling back; the displacements of the pushing and pulling
action are set as 0.6 mm, and the angular displacement of
the rotating action is set as 6°). Then, a Softmax layer is used
to calculate the action probability of each action by the

Softmax regression pa hoð Þ ¼ exp hoa
� �

=∑A−1
a¼0exp hoa

� �
, where

hoa is the ath output value.

2.3 Operating force mode recognizer

Recognition of the operating force condition can be de-
fined as a two-class classification problem. If the guide
wire tip encounters an obstacle, the operating force con-
dition is defined as an abnormal force mode. Otherwise,
the operating force condition is defined as a normal
force mode. As shown in Fig. 4, a multi-input 1-D
CNN is proposed as the operating force mode recogniz-
er. It takes both the current operating force values and
several last operating force values as the multiple input.
In this way, the variation tendency of the operating
force is also taken into account to recognize the oper-
ating force mode.

The operating force value at current time is defined
as Fti. The operating force sequence from Ftito M last
operating force values is defined as Ft (M is set as 50
in this work). The sampling frequency of the force sen-
sor is 90 Hz. Fti is taken as the input of the first
convolutional layer, which is followed by the second
convolutional layer, two fully connected layers, and a
So f tmax laye r a s the ou tpu t l aye r. The 1-D
convolutional layer can be expressed as (3).

ηli xð Þ ¼ σ bli þ ∑
k
∑
u
ηl−1k xð ÞWl

ki uð Þ
� �

ð3Þ

Fig. 3 Architecture of the action probability estimator
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where ηli is the ith output feature vector of the lth 1-D

convolutional layer, ηl−1k is the kth input feature vector

of the lth 1-D convolutional layer, Wl
ki∈R is the kth

kernel of the lth 1-D convolutional layers, bli is the bias
term, and σ(⋅) is the activation function ReLU.

To avoid data submergence of the current operating force
value Fi during convolution, Fi is directly taken as a part of the
input feature of the first fully connected layer. The first and
second fully connected layers can be expressed respectively as
(4) and (5):

η f 1 ¼ σ bf 1 þW f 1 Ft; Ftið Þ� � ð4Þ
η f 2 ¼ σ bf 2 þW f 2η f 1

� � ð5Þ

where (Ft, Fti) and η f 1 are respectively the input feature vector
and output feature vector of the first fully connected layer, η f 1

and η f 2 are respectively the input feature vector and output
feature vector of the second fully connected layer, W f 1 and
W f 2 are the weight matrixes of the two fully connected layers,
bf 1 and bf2 are the bias terms, and σ(⋅) is the activation func-
tion ReLU.

2.4 Eye-hand collaborative servoing algorithm

In this section, an eye-hand collaborative servoing algo-
rithm is proposed to realize autonomous control of the
slave robot under closed-loop architecture. It combines
the output of the action probability estimator and operat-
ing force mode recognizer. If the recognition result of the
operating force mode recognizer is a normal force mode,
the action with the maximum probability will be executed.
If the recognition result of the operating force mode rec-
ognizer is an abnormal force mode, the servoing algo-
rithm will control the slave manipulator to avoid the ob-
stacle by the given avoiding actions (i.e., pulling back the
guide wire by a certain distance and then rotating it by a

certain angle). The eye-hand collaborative servoing algo-
rithm is illustrated below:

2.5 Hardware setup and data collection

In order to collect data for network training, an ES robot [26]
is used to develop the hardware setup, as shown in Fig. 5a. It
mainly consists of a Geomagic Touch X device as the master
controller, a slave manipulator, a vessel model, and a gray-
scale monocular camera. During data collection, surgeons
control the slave manipulator via the master controller to op-
erate the guide wire inside the vessel model as shown in Fig.
5b. The master controller records the operating actions. The
force sensor inside the slave manipulator detects the operating
force, as shown in Fig. 5c. Meanwhile, the camera acquires
the surgical state image. Two kinds of vessel models are used
for data collection and evaluating experiments, as shown in
Fig. 6. One branch in the medical model and three designed
vessel models are used for data collection, while another
branch in the medical model and the fourth designed vessel
model are used for evaluating experiments. The proposed
CNN-based method is developed on the basis of TensorFlow
and a graphic workstation (with a GPU of NVIDIA Quadro
K4000).

Three kinds of experiments in different cases are designed.
The starting area and target area are given by an operator.

Case I The medical vessel model is used. Case I(a): the guide
wire tip is moved from the starting area and is orientated
towards the objective branch. The guide wire tip can be
pushed directly into the objective branch. Case I(b): the guide
wire tip is moved from the starting area and is orientated
against the objective branch. The guide wire tip needs to be
rotated firstly and then pushed into the objective branch. One

Fig. 4 Architecture of the
operating force mode recognizer
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hundred fifty demonstrations are conducted by 5 surgeons,
and about 5500 samples are collected for each case.

Case II The designed vessel models are used. Case II(a): the
guide wire tip is moved from the starting area and is orientated

towards the objective branch. The guide wire tip can be
pushed directly into the objective branch. Case II(b): the guide
wire tip is moved from the starting area and is orientated
against the objective branch. The guide wire tip needs to be
rotated firstly and then pushed into the objective branch. Case

Fig. 5 Experimental setup. a
Overview of the ES robot system
and the vessel model. b The guide
wire inserted into the vessel by the
slave manipulator. c The force
sensor inside the slave
manipulator

Fig. 6 Vessel models. a One branch in the medical vessel model for data collection and another for test. b Three designed vessel models for data
collection and one for test
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II(c): the guide wire tip has been moved into the wrong
branch. The guide wire tip needs firstly to be pulled back to
the entrance of the branch, then be rotated and pushed into the
objective branch. Two hundred demonstrations are conducted
by 5 surgeons, and about 11,000 samples are collected for
each case.

Case III The medical vessel model is used. A simulated plaque
is pasted on the vessel wall. The guide wire is pulled from the
starting area and had an encounter with the plaque. Case III(a):
the guide wire tip is not blocked by the obstacle, and the guide
wire needs to be pushed forward directly and passes the ob-
stacle. Case III(b): the guide wire tip is blocked by the obsta-
cle, and the guide wire will impress the obstacle and bend
gradually. Fifty times of demonstrations are conducted by 5
surgeons for each case.

2.6 Training the network

To avoid overfitting, the collected data are augmented by 15
times, adopting augmenting methods of flipping, rotating, and
adding Gaussian noise. Finally, about 704,000 of samples are
obtained. The lost function used to train the network can be
obtained based on a cross-entropy method. By defining all the
trainable parameters by θ, the lost function can be expressed as
(6):

L θð Þ ¼ −
1

N
∑
N

j¼1
∑
A−1

a¼0
1 y jð Þ

A ¼ c
n o

lnP ŷ jð Þ
A ¼ cjI jð Þ; θ

� �
ð6Þ

where I(j) is the input image batch, y jð Þ
A is the corresponding

label sets, ŷ jð Þ
A is the predicted action probability, and P(⋅) is the

probability of classifying I(j) as c class, which can be
expressed as (7):

P ŷ jð Þ
A ¼ cjI jð Þ; θ

� �
¼ eθ

T
c I

jð Þ

∑k
l¼1e

θTl I
jð Þ ð7Þ

As for training the operating force mode recognizer, the
loss function is also based on a cross-entropy method.

An Adam (adaptive moment estimation) optimizer is used
to train the networks. The batch size is 32. The learning rate is
initially set as 0.005, and it is reduced with a decay of 0.909 at
each training step until it reaches 0.0001.

3 Evaluation experiments and results

In this section, the goal of the evaluation experiments is to
answer the following questions: (1) how well does the pro-
posed CNN-based method compared with the state of the art?
(2) How well does the proposed eye-hand collaborative oper-
ation perform?

3.1 Comparison with the state of the art

Vessel branch passing tests are conducted for compari-
son between the proposed CNN-based method and
Yang’s non-rigid registration and GMM method [35].
Because the operating force is not taken into account
into Yang’s method, the evaluation tests do not consist
of an obstacle passing task. For detailed comparison,
evaluation tests in different cases with different training
data are conducted, as shown in Table 1. For conve-
nience, the data collected in each case are defined ac-
cording to themselves. For instance, the data collected
in case I is defined as case I data. In addition, the data
randomly mixing the case I data and case II data is de-
fined as multi-data. For quantitative comparison, evalu-
ation metrics are defined as follows:

(1) Success rate (SR): for a given surgical task, if the guide
wire tip achieves nearby the target area in a limit of 100 s, the
test is counted as success; otherwise, it is counted as failure.
Fifty times of tests are conducted for each case.

(2) Average operating time (AOT): the efficiency of task
execution was measured by average operating time. Larger
operating time indicates large X-ray radiation dose, which
leads to more damage to the surgeon and patient.

Although Yang’s method achieves relative higher SR
and shorter AOT, our method shows its capability of
adapting to different situations. As shown in Table 1, for
the tests on the medical model in case I(a) and case I(b),
Yang’s method trained respectively with case I(a) data and
case I(b) data achieves SR of 100% and 94%, respective-
ly, which are relatively higher than those with our meth-
od. In addition, the AOT with Yang’s method are shorter
than those with our method, with the largest AOT differ-
ence of 28.5% in case I(a). However, Yang’s method
trained with case I(a) data cannot complete the task in
case I(b). In fact, the guide wire tip directly moves into
the wrong branch in all the tests in case I(a) by Yang’s
method trained with case I(b) data. Similar results are also
observed from the tests in case II with Yang’s method
trained with non-corresponding data. The reason is that
the GMM in Yang’s method could only be trained with
the data from a relatively fixed starting point and gener-
ates a fixed action command sequence. In this way, de-
spite changes of the starting point, the robot is still con-
trolled by the generated command sequence. As a result,
the guide wire operated by the robot cannot reach the
target area. In contrast, our method trained with case I
data can perform the task in both case I(a) and case I(b).
It shows the same performance in the tests in case II. This
is because our method could learn the non-linear features
in mixed data. Also, based on the closed-loop control
architecture, our method estimates the current surgical
state and then generates the optimal action command at
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each time step, rather than preplanning and executing a
fixed action command sequence.

AOT of our method trained by the multi-data are reduced
respectively by 22.0% and 25.2% in case I(a) and case I(b),
compared with those trained by case I data. The reason for the
time reduction is the decrease in the wrong actions. Despite
data augmentation, the original vessel shape is constant in the
case I data. But there are more vessel shapes in the case II data.
So, the sample diversity is increased by combining case I data
with case II data. Then, the vessel shape tends more to be
considered a kind of feature by the network. It is beneficial
to improve the recognizing accuracy of the network. AOT
with case II data and multi-data are at the same level in case
II tests. The reasonmight be that only one kind of training data
with wide difference cannot obviously improve the recogniz-
ing capability of the network. In some particular situation,
reciprocating motion of the guide wire is observed, which
prolongs the task completing time. In this situation, the spatial
relationship between the guide wire and vessel wall is differ-
ent with most of the training samples; as a result, the recog-
nizing accuracy of the action probability estimator is low. The
estimator might output wrong action in this situation. When
the number of wrong actions is large enough, it could lead to a
failure test due to moving into a wrong vessel branch or ex-
ceeding the time limitation. It also indicates the importance of
sample diversity for recognizing capability of the action prob-
ability estimator.

In 61 of total 250 tests of our method trained with multi-
data in case I and case II, the guide wire tip moves into the
wrong vessel branch. And in 53 of these 61 tests, the guide
wire tip is successfully pulled back, rotated to the suitable
direction, and then pushed towards the target area. It indicates
the capability of recovering from failure situation of our meth-
od (Fig. 7), which is important for the application in a dynamic
surgical state. In contrast, Yang’s method does not show this
capability. Further, it should be pointed out that the

demonstrations of recovery from a wrong vessel branch are
not consisted in the case I data, but consisted in the case II(c)
data. It indicates that the network trained with multi-data
learns the skills of recovering from failure situation and shows
the skills in the tests in case I. It also indicates that the network
learns successfully to recognize the spatial relationship be-
tween the guide wire and vessel contours.

3.2 Performance evaluation of eye-hand collaborative
operation

For evaluating the eye-hand collaborative servoing algorithm,
evaluation tests of the task combining obstacle passing and
vessel branch passing are conducted in the testing vessel
branch of the medical vessel model. The guide wire could pass
the obstacle only if with suitable orientation. In most of the
evaluation tests, both of the robot and surgeon would try sev-
eral times of attempts before the guide wire tip passes the
obstacle. If the tasks are completed within 100 s, the test is
counted as success; otherwise, it is counted as failure. Two
hundred times of tests are conducted and finally achieve a

Table 1 Comparison between our method and Yang’s method

Test model Method Training data Case I(a) Case I(b)

SR AOT (s) SR AOT (s)

Medical vessel model Yang’s method [35] Case I(a) data 100% 21.4 0 –
Case I(b) data 0 – 94% 34.8

Our method Case I data 84% 32.3 80% 46.4

Multi-data 94% 25.2 92% 39.7

Case II(a) Case II(b) Case II(c)

SR AOT (s) SR AOT (s) SR AOT (s)

Designed vessel model Yang’s method [35] Case II(a) data 98% 31.7 0 – –
Our method Case II (b) data 0 – 94% 39.2

Case II data 96% 43.3 94% 54.8 86% 55.7

Multi-data 92% 48.9 90 57.2 84% 58.6

Fig. 7 A test demonstrates the capability of recovering from failure
situation
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success rate of 90.5%. It can be seen from Fig. 8 that the
operating times of the evaluation tests distribute mainly from
40 to 80 s. The AOT of eye-hand collaborative operation is
55.4 s, which is close to the surgeon’s tests of 44.1 s. Although
the maximum operating time is 139.2 s, which is larger than
the surgeon’s maximum operating time of 51.7 s.

Figure 9a, k shows respectively the guide wire tip trajecto-
ries of a representative robotic test and a manual test. It can be
seen from the trajectories that the robot controlled by the eye-
hand collaborative servoing algorithm performs the tasks
through a similar procedure compared with the manual test.
Owing to obstacle passing attempts, both of these two trajec-
tories are relatively tanglesome near the simulated plaque.
After passing the simulated plaque, the trajectory in the robot-
ic test is as smooth as that in the manual test.

The detailed moving procedures of the guide wire in these
two tests are respectively shown in panels b–j and l–t of Fig. 9.

Three obstacle passing attempts are observed in these two
tests. In all the robotic tests and manual tests, the times of
obstacle passing attempts range from 0 to 6. Points B, D,
F, L, N, and P in Fig. 10 are respectively corresponding to
Fig. 9b, d, j, l, n, t. It can be seen that the operating force
mode recognizer correctly recognizes the abnormal force
mode at points B, D, and F, and then the obstacle
avoiding actions are correctly executed. After that, the
action probability estimator correctly understands the sur-
gical state and rotating actions are executed near the junc-
tion to adjust the guide wire tip towards the objective
branch.

Further, the operating forces at points B, D, F, L, N,
and P are not of the same value as shown in Fig. 10. It
indicates that the operating force mode recognizer recog-
nizes the force mode not simply according to a threshold
force value but according to both the variation tendency
and instantaneous value of the operating force. It is sim-
ilar to the surgeon’s manner of operating force mode
recognition. In addition, the maximum operating forces
during obstacle avoiding attempts in all the evaluation
tests range from 0.24 to 0.79 N, which are at the same
level as those in manual tests (ranging from 0.29 to
0.83 N).

The results of operating force comparison indicate that the
operating force mode recognizer learns the skills of the sur-
geon and shows a similar performance to manual tests. It is
beneficial to assure the surgery safety. The overall results
demonstrate that the task combining obstacle passing and ves-
sel branch passing could be autonomously performed by the
robot with the eye-hand collaborative servoing algorithm.

Fig. 9 Comparison of guide wire
tip trajectory and detailed
operating procedure. a–j Robotic
test. k–t Manual test

Fig. 8 Distribution of operating times
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4 Discussion

Despite the unstructured surgical state and the surgeon’s im-
plicit skills, surgical tasks in ES requiring human cognition
and experience can be executed autonomously without man-
ually preprogramming for different situations. We demon-
strate the feasibility and potential of the proposed CNN-
based method to unstructured surgical state perception and
the surgeon’s skill learning in ES.

The experimental results show the CNN-based method’s
capability of adjusting to different situations. With the high
non-linear mapping capacity, the CNN could be trained with
the sample data collected at different conditions, compared
with non-rigid registration and GMM methods [35]. As a re-
sult, it has the capability of adapting to different situations.
Owing to its closed-loop control architecture and ability to
perceive an unstructured surgical state, our method shows
the capability of recovering from failure situation. Recovery
from failure situation is a critical issue for application of the
deep learning method in real-world robotics [50]. Our method
achieves the capability of recovering from failure situation by
combining samples of case II(c) with the training data, which
consists of the samples of recovery from a wrong branch. It is
interesting that the network trained with multi-data learns the
skills of recovering from failure situation and shows the skills
in the tests of case I that does not consist of samples of recov-
ery from a wrong branch. It demonstrates the ability of the
CNN-based method that it could transfer the learned skills to
different situations. It is inspirational for the issue of experi-
ence sharing among multiple ES robots trained by the demon-
stration data collected by different surgeons with different
skills.

Under a closed-loop control architecture, the eye-hand col-
laborative servoing algorithm effectively integrates the capa-
bilities of the action probability estimator and operating force
mode recognizer. The action probability estimator helps to
choose the optimal action based on unstructured surgical state
perception. The operating force mode recognizer maintains a
similar operating force level to manual operation, which is
beneficial to surgical safety assurance. These capabilities are

obtained through learning from demonstrations rather than
manually preprogramming. Further, the inputs to the network
are an image and force signal, which are not related to the
kinematics and dynamics of the surgical robot. It means that
calibration of the camera and robot coordinates is not needed,
which is necessary for many current methods [24].

The main reason for the failure cases is that diversity of the
samples is not high enough. Because there are always some
patterns for human demonstrations, some particular situations
during the robotic test are not similar to those in the samples.
In these situations, wrong actions might be chosen and exe-
cuted. SR could be improved by enhancing generalization of
the network in the future work, using more training data from
various high-fidelity surgery scenarios.

The intent of the proposed CNN-based framework is not to
replace human surgeons but to enhance the autonomy of the
ES robot, since improving the autonomy of the surgical robot
could expand human capacity and capability in human-robot
collaborative surgery [51]. In human-robot collaborative sur-
gery, the slave robot would be controlled by both the human
surgeon (through a master robot) and trained network within
specific collaborative architecture. For instance [52], repeti-
tive and low-risk surgical tasks could be performed autono-
mously by a robot under a human surgeon’s supervision,
while the surgeon focuses on high-risk tasks. In this way, the
burden on the surgeon could be reduced, and more attention of
the surgeon could be turned to complex hand high-risk tasks.

5 Conclusion

In this paper, we report a CNN-based method of unstructured
surgical state perception and the surgeon’s skill learning for an
ES robot. The results demonstrate the feasibility and potential
of the CNN-based method for enhancing the autonomy of the
ES robot. In addition, because the kinematic and dynamic
models of the robot are unnecessary, the CNN-based method
has the potential to be easily extended to many other kinds of
surgical robots.

Fig. 10 Comparison of operating
force. Points B, D, F, L, N, and P
in this figure are respectively
corresponding to panels b–j and
l–t of Fig. 9
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Future studies will include the following: enhancement of
the network generalization through collecting more various
demonstration data, 3-D perception of the surgical state by
taking images from different views as input to the network,
and a specific architecture for human-robot collaborative
operation.
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