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Abstract—Aiming to deal with underwater localization for
small-size robots in GPS-denied and structured environment,
this paper proposed a novel multi-sensor fusion-based self-
localization system using low-cost sensors. Based on multi-
sensor information fusion, an Extended Kalman Filter (EKF)
is utilized to synthesize the multi-source information from an
Inertial Measurement Unit (IMU), optical flow, pressure sensor
and ArUco markers, which enables the robot obtain a highly
precise positioning. This method also can reduce the location
drift over time owing to the loss of markers in pure markers-
based localization. Specially, a velocity correction model is
proposed using the angle information obtained by IMU, which can compensate optical flow-based velocity estimation
errors caused by robot posture changes. Finally, to validate the performance of the proposed self-localization system,
simulationsare conductedusing Gazebo simulatoron the robot operatingsystem (ROS). Moreover,a series of experiments
in an indoor swimming pool are presented. Results of the proposed method and dead reckoning are compared in
simulation and experiment to demonstrate the robustness and feasibility of the proposed localization system.

Index Terms— Bio-inspired robot, multi-sensor fusion, marker- assisted localization, underwater self-localization
system.

I. INTRODUCTION

IN RECENT decades, underwater detection and localiza-
tion using underwater sensor networks [1], [2] have a
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great development. But these methods are the most important
technologies to guide the robot to implement autonomous
operation tasks [3], [4] in open and wide oceans. In narrow
and structured spaces, such as nuclear reactor pool, under-
water self-localization methods [5], [6] are necessary for
the autonomous underwater vehicles and underwater robots.
In Fig.1, the robot is operating in the nuclear reactor pool.

Now most underwater self-localization researchers are
focused on the deep-seas environment for large AUVs.
As shown in TABLE I, these researches are mainly divided
into three categories: Inertial Navigation System (INS),
Acoustic Beacon-based System (ABS), GPS-based system and
Simultaneous Localization and Mapping (SLAM). INS method
is also called dead-reckoning [7], [8], which is calculate the
vehicles moving distance using the direction and velocity
obtained by Inertial Measurement Unit (IMU) and Doppler
Velocity Log (DVL), respectively. The acoustic localization
system [9] acquires the location by measuring the time of
flight of signals from acoustic beacons or modems to perform
navigation. The two methods all need equipment with large
size and high power, which is not suitable for the miniature
underwater robot. GPS-based positioning method [10], [11]
is not used in underwater environments. SLAM-based local-
ization method [12], [13] is realized with surrounding envi-
ronment features detection in visual measurement or imaging
sonar. But in the nuclear reactor pool, the bottom and wall
of pool are smooth monochromatic planes, and it is difficult
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Fig. 1. Overview of the robot operation in the nuclear reactor pool.

to detect features. Therefore, autonomous underwater self-
localization method in structured and GPS-denied environ-
ments are more challenging and difficult than in the widely
deep sea.

Unlike the field environment, such as the sea and the
river, the water in structured environments (the nuclear reac-
tor pool etc.) are much clearer, which make vision-based
approach [14]–[16] become feasible. As shown in TABLE I,
except the advantage of low-cost sensors and low power
consumption, vision-based localization is a feasible method
for the miniature underwater robot [17], [18] with limited
computational capacities and energy. A planar marker-based
localization system [19] has been built in the robotic fish
with the cheap webcam and the ARM processor. And the
accurate absolute position information can be obtained by
the 30 markers in the bottom of the aquarium. Another
research [20] also used a coded map covered on the bottom in a
water tank to estimate position of the robot. More importantly,
in order to improve the stability and accuracy of vision-based
localization, many researches combine vision-based method
with inertial navigation. Karras et al. proposed the state esti-
mation module [21] using IMU, pressure sensor and a down-
looking camera. The pose, velocity and acceleration were
fused by complementary filter. Meanwhile, ArUco markers
were used to correct the accumulated error, but the velocity
correction is not presented. Jongdae et al. proposed a AUVs
self-localization method [22] using visual measurements of
underwater structures and artificial landmarks. The particle
filter was exploited to fuse data from IMU, DVL, markers and
attitude and heading reference system (AHRS). This method
needs to extracted geometry information of the target structure
to compare with pre-generated synthetic observations, which
greatly increased the complexity of the system and reduced
the robustness of the system. Besides, compared with a down-
looking camera, the FOV (field of vision) limitation of a
forward-looking camera in this method reduced the probability
that the robot cannot capture the markers, but it led to the
localization drift easily.

In this paper, a multi-sensor fusion-based self-localization
system of a miniature underwater robot is proposed to generate
high-precision position online using low-cost and small-size
sensors in structured and GPS-denied environment. Consid-
ering the efficiency and accuracy of Extend Kalman Filter
(EKF), Unscented Kalman Filter (UKF) and Particle Filter

TABLE I
DISTINCTIVE CHARACTERISTICS OF EXISTING

LOCALIZATION METHODS

TABLE II
NOTATIONS IN PROPOSED APPROACH

(PF), EKF is used to fuse the multi-source information,
including the pose and position from ArUco markers, heading
angle from IMU, corrected velocity from optical flow and
depth from pressure sensor, to reduce the location drift over
time owing to the loss of markers in pure markers-based
localization. To help the reader to understand this method,
a detailed notations introduce is given in TABLE II.
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Fig. 2. Overview of the miniature underwater robot. (a) Crawling mode;
(b) swimming mode.

The rest of this paper is organized as follows. Section II
gives robot platform. Section III presents EKF-based multi-
sensor fusion-based self-localization system, including ArUco
marker-based mapping and localization, velocity measurement
and correction, EKF-based multi-source information fusion.
Section IV and Section V conducted Simulations and experi-
ments, respectively. Section VI concludes this paper.

II. ROBOT SYSTEM DESCRIPTION

A. Overview of the Underwater Robot
Aiming at performing tasks in structured environments, a

turtle-inspired spherical underwater robot [23]–[27] is devel-
oped. As shown in Fig. 2 (a), the robot is shaped like a
sphere and the well-symmetry benefits underwater modeling
and resistance to water turbulent. An intermediate plate divides
it into two parts. The upper spherical part is composed of a
sealed housing and an inlet and outlet housing that is used to
regulate zero-buoyancy in water. The sealed housing consists
a circuit system, processers, IMU, and pressure sensors. The
acoustic communication and binocular camera are mounted
on the upper part. The lower part consists of a detachable
battery housing and a multi-vector water-jet propulsion system
which is composed of four mechanical legs. Each leg has three
joints actuated by servomotors. A downward-looking camera
is equipped on the intermediate plate. Two servomotors are
also installed on the plate to drive the opening and closing of
two quarter-spherical hulls. As shown in Fig.2 (a), the robot
can crawl on the pool floor in structured environment, such as
a nuclear reactor pool. Also, the robot can swim between task
waypoints as shown in Fig. 2(b).

B. Main Components of the Robot
According to application requirements, main components

of the robot is shown in Fig. 3. It is divided into five
components, including information processing, sensor, driving,
communication and energy supply system.

The information processing system mainly performs tasks,
such as sensor data collection and processing, robot position
and pose control. Due to the limited power consumption and
narrow space of the miniature underwater robot, NIVIDA
Jetson TK1 is selected as the core processor and it is assisted
by STM32F407VET6 microcontrollers to consider the effi-
ciency of data processing. The robot is automatically operating
on a Linux system, which communicates with the remote
computer via an optical fiber cable. The sensing system com-
pletes tasks, such as sensing its own state and perceiving the

Fig. 3. Main components of the proposed robot.

surrounding environment. A low-cost down-looking camera
fixed in a 3D-printed waterproof housing, is mounted to the
left side of the robot, and used to acquire images in the bottom
of tank. IMU is arranged in the sealed housing, and acquire
the pose of the robot. Furthermore, a binocular camera is used
to perceive obstacles ahead and a pressure sensor is utilized to
calculate the distance between the robot and the water surface.

The multi-vector water-jet driving system is the basis of the
robot movement in water. It is composed of four mechanical
legs actuated by servo motors and water-jet thrusters. Each
leg with three joints has three Degrees of Freedom (DoF) and
the thruster is fixed on the leg. Four legs are radially free
distributed around the robot with high symmetry, which com-
posed the multi-vector water-jet propulsion system. Energy
supply system provides the power for the whole robot system.
The system has three 7.4V Li batteries with a total capacity
of 13200mAh, which are processed by circuit modules to meet
the different voltage requirements of different subsystems. The
communication system includes acoustic communication and
optical fiber communication. According to the needs of robot
image transmission and multi-source data transmission, optical
fiber is used to communicate with the remote computer.

III. EKF-BASED MULTI-SENSOR FUSION

SELF-LOCALIZATION SYSTEM

This section presents EKF-based multi-source information
fusion self-localization system. The acquisition and processing
of pose information and velocity from ArUco markers and
optical flow are introduced in detail. Then, multi-source infor-
mation from IMU, optical flow, ArUco markers and pressure
sensor is used to estimate the robot state using EKF. The
schematic diagram of the proposed localization system is
shown in Fig. 4.

A. ArUco Marker-Based Mapping and Localization
According to the discussion above, the position information

obtained by ArUco makers [28] has high accuracy, which leads
its higher credibility and priority in the localization system.
Fig. 5(a) shows the successful detection of ArUco markers.
But this method is easily affected by the light intensity. The
low light intensity makes the environment dark, so the image
is unclear and the visual features is not obvious. It is hard
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Fig. 4. Schematic diagram of self-localization system.

to detect the corners in optical flow method and recognize
ArUco Markers. However, most of the nuclear pool have a
good light intensity, and the clear water leads the markers
identification easily. Therefore, the marker arrays are widely
employed in featureless indoor environments such as a shallow
test tank [29], such as the nuclear reactor pool. It is also
suitable to correct the drift of the inertial navigation system.

ArUco library contains 1024 images that modified by dif-
ferent internal binary codes and assigned different numbers.
And the marker can be uniquely identified by its code, which
enables it to have the ability to provide detection, recognition
and six DOF pose information of camera. Since the robot is
not positioned at a fixed point, but over a large range, a series
of ArUco markers which are arranged irregularly at the bottom
of the pool are utilized in the proposed localization system.
Therefore, the relative position of these markers is required.
In other words, the map containing the location information of
these markers needs to be determined in advance. Building a
precise ArUco map is a vital component in the algorithm. One
of the most intuitive methods is to apply visual information to
complete the automatic mapping process. To be specific, if one
marker is utilized as a reference frame, each frame captured by
the camera should ensure that at least two markers exist at the
same time, and at least one of them also exists in the previous
frame, and so on, the relative position between each marker
is obtained [30]. Then, the pose of camera can be calculated
when any marker presents in the field of view.

The ArUco marker coordinate system is defined as a, and
map coordinate system is defined as m, which is coincided
with the coordinate of the first detected marker. Thus, the cen-
ter position and orientation of the marker in coordinate m are
Pa

m = (xa
m, ya

m, za
m) and Oa

m = (θa
m, ϕ

a
m , ψ

a
m), respectively. And

the position and orientation of the camera in coordinate m are
Pc

m = (xc
m, yc

m, zc
m) and Oc

m = (θ c
m, ϕ

c
m, ψ

c
m ), respectively. The

position and orientation of camera that calculated by markers
in coordinate a are Pc

a = (xc
a, yc

a, zc
a) and Oc

a = (θ c
a , ϕ

c
a, ψ

c
a ).

The plane schematic diagram of coordinate transformation is
shown in Fig. 6. And the relationship of them is described as
follows.

Oc
m = Oa

m + Oc
a (1)

Pc
m = Pa

m + R(Oa
m)P

c
a (2)

Since these irregular ArUco markers are all fixed on the
flat ground, their height roll and pitch value equal to zero,
that means, za

m = 0, ϕa
m = 0, ψa

m = 0. So, the R(Oa
m ) is

Fig. 5. Detection of ArUco markers. (a) Normal detection, (b) abnormal
detection with shelter, (c) abnormal detection caused by reflection.

Fig. 6. The schematic diagram of coordinate transformation.

obtained.

R(Oa
m) =

⎡
⎣

cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

⎤
⎦ (3)

Finally, Oc
m and Pc

m , also the pose of camera can be
obtained from the above analysis. Considering that there may
be more markers in a frame at the same time, the camera
position calculated by each marker should be identical in a
perfectly ideal situation. However, the error often exists. In this
case, the pose information calculated by different markers is
averaged to be the final and accurate value. The position of
robot can also be derived from this information.

ArUco marker occupies little computational resources and
provides the pose information of the camera with high pre-
cision, markers will not appear in the field of view all the
time. Sometimes, when it appears in the field of view, it is
challenge to recognize the markers because of the shelter or
reflection, as shown in Fig. 5(b) and Fig. 5(c). Therefore, it is
straightforward to consider obtaining stable positioning result
with additional sensors, and ArUco marker-based localization
is used to correct errors when they occur in the field of view
and can be identified. So, the data processing from other
sensors is introduced in the rest of this section.

B. Velocity Measurement and Correction
Optical flow is used to find the corresponding relationship

between the previous frame and the current frame using the
change of pixels in the time domain, then calculate the motion
information of the robot between adjacent frames. In this
paper, a down-looking camera is mounted on the robot to
estimate the moving information of the robot.

A traditional Pyramid Lucas-Kanade optical flow
method [31] is applied to proposed localization method.
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Fig. 7. Schematic diagram of velocity measurement by optical flow.

The schematic diagram of calculating velocity by optical flow
is shown in Fig. 7. Point O is the optic center of the camera,
A is a feature point in the image, and B is the same feature
point in another frame. The motion velocity of camera can
be obtained from the distance of the same feature point in
the different frame. In addition, f is the focal length of the
camera, and h is the distance of the camera from bottom
of the pool. Set FOV as the field of view, the velocity of
camera can be calculated as below.

ABx

A�B �
x

= f

h
= ABy

A�B �
y

(4)

veloci tyx = A�B �
y

�t
= |u B − u A| · h

f ·�t
(5)

veloci tyy = A�B �
y

�t
= |vB − vA| · h

f ·�t
(6)

where ABx , ABy are the distances of AB in the x and y
directions in image plane, respectively, and A�B �

x , A�B �
y are

the distances in object plane.
During the robot movement in water, the uneven distribution

and water flow may cause the roll and pitch of the robot.
As shown as in Fig. 7, the image plane of down-looking
camera is not parallel to the object plane. Then, the estimated
velocity of the robot is inaccurate. Therefore, an IMU-based
corrected velocity estimated method is proposed by Equa-
tions (7)-(10).

ABx = A1 B1x − ϕ · row

FOV
(7)

ABy = A1 B1y − ψ · col

FOV
(8)

veloci tyx =
���u B1 − u A1

�� − ϕ · row
F OV

� · h

f ·�t
(9)

veloci tyy =
���vB1 − vA1

�� − ψ · col
F OV

� · h

f ·�t
(10)

where row, col are number of image rows and columns,
respectively. And ϕ, ψ can be measured by IMU. Thus,
the velocity of the robot is calculated.

C. EKF-Based Multi-Source Information Fusion
According to the previous discussion, when marker is not

detected, inertial navigation is adopted to realize real-time self-
localization. Therefore, optical flow technology and IMU are
exploited for pose and position estimation. EKF is suitable

Fig. 8. State model of system.

for nonlinear system, and has a good real-time performance
which is used to improve the proposed localization accuracy.
The optimal estimated value of current state is obtained by
the previous state estimation and the current state observation.
In this process, the state model and observation model are
essential to be established firstly.

1) State Model: considering to obtain the localization infor-
mation of the robot, s(k) = [x(k), y(k), z(k), θ(k), v(k)]T is
set as the state vector of the system. As shown in Fig. 8,
It consists of position in the world coordinate system, yaw
angle and velocity of the robot. The system equation is given
in the following form:

s(k) = f (s(k − 1), k − 1)

=

⎡
⎢⎢⎢⎢⎣

x(k − 1)+ v(k − 1) ·�t · cos θ
y(k − 1)+ v(k − 1) ·�t · sin θ

z(k − 1)
θ(k − 1)
v(k − 1)

⎤
⎥⎥⎥⎥⎦

+σ(k−1) (11)

where f (s(k), k) is the nonlinear system function, θ(k) and
v(k) are yaw angle and velocity of robot at time k, respectively.
σ(k) is the process noise which is assumed as Gaussian white
noise and σ(k) ∼ N(0, Q(k)), �t is system sampling interval.

2) Measurement Model: In robot localization system, sen-
sors are employed to refine the predicted position, including
camera, pressure sensor and onboard IMU. Here are two
situations: (1) the ArUco marker is captured and recognized;
(2) ArUco maker is not recognized. Without ArUco marker-
assisted localization, depth data from pressure sensor, yaw
angle from IMU and velocity from optical flow can be used
and the measurement vector is m(k) = [z(k), θ(k), v(k)]T .
If the robot captured and recognized ArUco maker, the mea-
surement vector is m(k) = [x(k), y(k), z(k), θ(k), v(k)]T .
And the measurement equation is given as follows:

m(k) = h(s(k), k)+ υ(k) (12)

where h(s(k)) is measurement function, υ(k) is assumed to
Gaussian white noise in measurement and υ(k) ∼ N(0, R(k)).

With the system model described above, the depth, yaw
angle and velocity are fused together to achieve localization.
Although data acquisition from sensors is normally at a high
frequency, the continuous localization trajectory does not exist
in practical navigation applications. Therefore, EKF uses the
current estimated state at each time step k as a linearization
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point [32]. And EKF algorithm is described as follows:
ŝk|k−1 = Fkŝk−1 (13)

Pk|k−1 = Fk−1 Pk−1 FT
k−1 + Q(k) (14)

Kk = Pk|k−1 H T
k (Hk Pk|k−1 H T

k + R(k))−1 (15)

ŝk = ŝk|k−1 + Kk(mk − h(ŝk|k−1)) (16)

Pk = (I − Kk Hk)Pk|k−1 (17)

where, Fk and Hk are Jacobi matrices of the non-linear sys-
tem function f (s(k), k) and measurement function h(s(k), k).
Q(k) is the process noise covariance matrix and R(k) is
the measurement noise covariance matrix. Pk is the state
covariance matrix and Kk is the Kalman gain matrix. Besides,
·̂ stands for estimate value. Q(k) and R(k) are the values
reflecting process noise and measurement noise, respectively,
and they are unable to be calculated by theoretical derivation
and are often tuned experimentally by a trial-and-error method.
The Jacobi matrices Fk and Hk are calculated as follows:

Fk = ∇ f (s(k), k) = ∂ f (s(k), k)

s(k)

=

⎡
⎢⎢⎢⎢⎣

1 0 0 v ·�t · cos θ �t · sin θ
0 1 0 −v ·�t · sin θ �t · cos θ
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

(18)

Hk = ∇h(x(k), k) = ∂h(x(k), k)

∂x(k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, if ArUco is recognized

⎡
⎢⎣

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎦, if ArUco is not recognized

(19)

where, Hk is determined by whether the ArUco marker is
recognized. The partial derivative of these Jacobi matrices is
relatively easy to be calculated and it is not necessary to use
UKF or PF. Therefore, the computational complexity of EKF
is easier than UKF and PF.

D. Online Self-Localization Strategy
Generally, with key information extracted from sensors, the

proposed EKF-based self-localization approach synthesizes the
multi-source information to realize the online self-localization
system with low-cost sensors and low power consumption
hardware platform. In addition, other sensors can be easily
extended to this system to further improve accuracy and
redundancy. As illustrated in Fig. 9, initially the robot does
not obtain its own position, and maybe none of marker exists
in the field of view. Thus, the origin of the world coordinate
system is defined as the projection point of the robot initial
center position on the two-dimensional ground, and the vertical
ground upward is the positive direction of the Z -axis.

Fig. 9. Flowchart of the online self-localization system.

The direction in which the yaw angle equals to zero is the
positive direction of the X-axis, and the definition of Y -axis
satisfies the right-hand rule. When the marker does not appear,
only the yaw angle provided by IMU and velocity provided
by optical flow are fused to perform position estimation.
Specially, the coordinate system of the first marker in the field
is defined as the new world coordinates. The position obtained
before the first marker appears needs to be transformed to
the new coordinate system. It has been hypothesized that
markers have been fixed on the flat ground, so the pitch and
roll angles of robot in two coordinates are consistent. Finally,
the transformation relationship is as follows:

Pc
m = R(θR)P

c
o + T (20)

θR = θ c
m(t)− θ c

o (t) (21)

T = −Pc
o (t) (22)

R(θR) =
⎡
⎣

cos(θR) sin(θR) 0
− sin(θR) cos(θR) 0

0 0 1

⎤
⎦ (23)

where Pc
o and Pc

m are camera position in the initial coordinate
system and marker coordinate system, respectively. θR is the
rotation angle in the z-axis between above two coordinate
systems. θ c

o (t) and θ c
m(t) respectively represent the yaw angle

of the camera in the initial coordinate system and marker
coordinate at time t . R(θR) and T are the rotation and
translation matrices between two coordinate systems.

In addition, depth information measured by the pressure
sensor are available at the same sampling frequency as the
velocity from optical flow. If the ArUco marker appears in the
current frame, the position is easily calculated to correct the
accumulative error due to the drift.

IV. GAZEBO-BASED SIMULATION

Simulations are conducted using Gazebo 7 in Robot Oper-
ation System (ROS) platform to validate the feasibility and
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TABLE III
CAMERA INTRINSIC PARAMETERS

TABLE IV
CAMERA DISTORTION PARAMETERS

TABLE V
NOISE VARIANCES OF VIRTUAL SENSORS

effectiveness of the proposed self-localization system. Robot
model and virtual scene are built in Gazebo platform.

A. Gazebo-Based Simulation Platform
Gazebo is one of the most widely used robot simulation

platforms. The robot 3D movement simulation facilitates the
robot research. In this simulation, the first step is to design
the simulation system, including the robot model establishment
and the experimental environment arrangement. We import the
model built in SOLIDWORKS into Gazebo to keep the same
shape, size, and quality with the real robot. The simulated sen-
sors include IMU, pressure sensor and camera, they are driven
by plugins in Gazebo. Camera parameters are the same as
those obtained by camera calibration. All the parameters in the
simulated experiments have been listed in TABLES III and IV.
In order to conform to the actual situation, Gaussian white
noises are added to the virtual sensors according to the sensors
used in the robot. The noise variances are shown in TABLE V.

The experimental scene design is divided into the water
environment and the marker layout. At the bottom of the
water environment, 20 ArUco markers with different IDs
are fixed for the auxiliary localization of the robot. The
simulation environment is shown in Fig.10. Then the next
step is to link the localization algorithm on ROS platform
with the Gazebo simulation system, as shown in Fig.11.
with messages read by the virtual sensors, the robot position
is calculated by the state estimation module online, and is
fed back to decision center. Using the current position and
the predefine trajectory, decision center calculates the control
signals using PID algorithm and send control signal to the
motors and water-jet thrusters. Since the simulation system and
the localization system are completely independent, the format
of data transferred between them is the same as the robot

Fig. 10. Simulation environment in Gazebo.

Fig. 11. Structure of simulation platform.

Fig. 12. Motion process and image captured by down-looking camera.

prototype, Therefore, all modules in the localization system
can be directly applied to the robot prototype.

B. Simulation in Gazebo
The robot started from the coordinate origin in the virtual

environment, and tracked a counterclockwise rectangle path.
While the robot moves along the given path, the down-looking
camera detects and recognizes ArUco markers in real time,
as shown in Fig. 12. Due to the higher accuracy of markers-
based localization, once one marker is recognized, current
position is immediately corrected.

Simulated experiments are conducted using two localiza-
tion methods. In the first method, only IMU and Optical
Flow (IOF) are exploited to calculate the robot position.

Authorized licensed use limited to: Harbin Engineering Univ Library. Downloaded on December 01,2021 at 02:26:24 UTC from IEEE Xplore.  Restrictions apply. 



XING et al.: MULTI-SENSOR FUSION SELF-LOCALIZATION SYSTEM 27143

Fig. 13. 3-D estimated trajectory of robot in simulation.

Fig. 14. Estimated trajectory in X-Y plane.

The second method is the proposed method which utilizes
the ArUco markers to assist localization. 3-D estimated robot
trajectory robot in simulation is shown in Fig. 13. The blue,
red and green curve indicate the reference, the proposed
method and IOF, respectively. Robot trajectories of the two
localization methods are generally in the same plane, and the
markers-assisted localization method is closer to the preset
robot trajectory (blue curve in Fig. 13). Moreover, the local-
ization results with two methods and comparison analysis
in 2-D plane are illustrated in Fig. 14 and Fig. 15, respectively.
Although the trajectory of IOF method is very smooth and the
localization result is close to the reference in a short time,
the trajectory deviated from the reference as robot moves.
It confirms that the IOF suffer from a drift problem. On the
contrary, the marker-aided method can well compensate the
drift caused by IOF. As mentioned above, marker information
has the highest trust level in our algorithm because it is more
reliable than inaccurate optical flow and IMU. Sometimes
the output trajectory of the marker-aided method is not very
smooth. The reason is that the robot cannot see markers all
the time. When there is no valid markers in the view of the
robot or recognition failure, IOF will be used to positioning
and the estimated localization will gradually diverge from
real value due to the drift until the robot catches sight of
a marker. At that moment, the position is corrected to an
accurate value. This explains why the red curve is not smooth.
In the whole trajectory, results of the proposed method at each
moment are very close to the preset trajectory, as shown in
Fig. 14. According to the analysis of experimental data, IOF

Fig. 15. Maximum and average errors of two methods in simulations.

Fig. 16. (a) Experimental setup and (b) the pre-obtained markers array.

localization results are not very accuracy, and the maximum
errors in X and Y are 0.418m and 0.391m over a 15m long
trajectory. This is caused by the drift of low cost IMU and
optical flow-based velocity estimation. As shown in Fig. 15,
the average error of proposed method remains below 10cm and
the maximum error is not greater than 20cm, which proves that
the proposed method reached the requirement.

Consequently, the proposed method has better performance
than the IOF in the average sense. And simulation experiments
have demonstrated the availability and accuracy of proposed
localization algorithm for the miniature underwater robots with
low computational performance and low-cost sensors.

V. EXPERIMENTS AND ANALYSIS

Although simulation results verified the feasibility of the
proposed algorithm, a set of experiments employing a minia-
ture robot is conducted to further prove the practicability of the
self-localization algorithm. This robot has a good movement
performance [33], [34] against water turbulent.

A. Experimental Setup
As this method is designed for the nuclear reactor pool,

the turbulent can be ignored. Therefore, experiments were
conducted in an indoor swimming pool, with dimensions
3m × 2m × 1m as shown in Fig. 16 (a). The bottom of pool
was covered with 20 ArUco markers for acquiring precise
position information. In the real environment, the light and
visibility of water environment will greatly affect the accuracy
of marker identification. Thus, in order to detect markers as
many as possible, the distribution of markers is relatively
dense. And the array and geometry relationship are predefined.
The distribution map of markers with different IDs is shown
in Fig. 16 (b). A down-looking camera with 640 × 480 pixels
and 30 frames per second (fps) is suspended below the robot,
and it is exploited to identify the markers and capture the
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TABLE VI
MAIN COMPONENTS OF THE ROBOT

Fig. 17. Snapshots of localization experiment.

Fig. 18. 3-D estimated trajectory of robot in experiments.

optical flow. A low-cost IMU is fixed in the sealed housing
for measuring the yaw, pitch and roll angle of the ego robot.
Pressure sensors are used to obtain depth information. Besides,
in order to evaluate the robot position calculated by the self-
localization method, the global position is estimated using a
vision-based localization method with a global camera above
the swimming pool. The main hardware and software of
localization experiments are summarized in TABLE VI.

B. Localization Performance Analysis and Comparison
This section reports a performance analysis as well as a

comparison between the proposed multi-sensor fusion-based
algorithm and traditional INS method. In this experiment,
a rectangle trajectory is predefined. As shown in Fig.17,
the markers were recognized in turn while the robot tracked the
trajectory. The 3-D localization results are shown in Fig. 18.

Fig. 19. Estimated trajectory in X-Y plane.

Fig. 20. Maximum and average errors of localization results.

As shown in Fig. 19, the 3-D results are projected to O-XY
plane. The red curve indicates the positioning results using
the proposed localization method, and the blue curve is the
reference calculated by the vision-based localization with a
global camera. Compared with the IOF localization results
(green curve in Fig. 18), the proposed localization results
is closer to the reference, which proves that the proposed
marker-aided multi-sensor fusion-based localization method
has higher accuracy. Unlike the smooth green curve, the red
curve exists fluctuations, which caused by the marker-based
position correction. With the marker-based position correction,
the deviated robot trajectory is corrected back to the reference.
In the z-axis, the two methods have small fluctuations, which
conforms to the fact that the robot moves in a defined depth.

To further evaluate the proposed localization results,
the maximum error and average error of two methods are
compared in Fig. 20. In the 6.5m rectangle trajectory, the max-
imum errors of IOF in X and Y are 0.613 m and 0.482m, and
the maximum errors of the proposed localization method in X
and Y are only 0.14m and 0.07m. The errors of IOF came from
the error accumulation caused by the drift of IMU and optical
flow-based velocity estimation. The errors of the proposed
method are mainly caused by the marker identification failure.

In conclusion, as demonstrated by experimental results
above, the performance of the marker-assisted multi-sensor
fusion-based localization algorithm is significantly better in
comparison to the IOF method. Using this proposed method,
the miniature robot can position itself online in structured envi-
ronments. Because of various reasons, marker will not always
appear, nor will every marker in the field of view be identified.
Nevertheless, information obtained by marker still plays an
important role. The estimated position will gradually diverge
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until a valid marker is identified. At that moment, the estimated
position is enforced to return to an accurate value. Generally,
average errors maintain below 10 cm, maximum errors are not
greater than 20 cm, which proves that the proposed method
reached the requirement.

Compared with simulation results, average errors of the
proposed localization method are larger. The reason is that
markers identification failure caused by the interference of
light in the lab. In contrast, the maximum error in the simula-
tion environment is greater than that in the real environment.
The reason for this situation is that the size of the pool limits
the moving distance of the robot, and the error accumulation in
the localization process is not as obvious as in the simulation.
However, the simulation and experimental results have well
evaluated and proved the practicability and accuracy of the
multi-sensor fusion-based localization method for the minia-
ture underwater robot.

VI. CONCLUSION

This paper proposed an autonomous underwater self-
localization system of a miniature underwater robot using
multi-sensor fusion with low computational capacities
and low-cost sensors. The proposed multi-sensor fusion
method employs Extended Kalman Filter to synthesize the
multi-source information from ArUco makers, IMU, pressure
sensors and optical flow, which enables the robot obtain a
highly precise positioning. This method also can reduce the
location drift over time owing to the loss of ArUco markers in
pure markers-based localization. Specially, a velocity correc-
tion model is built to compensate optical flow-based velocity
estimation error using the angles information obtained by
IMU. The simulation and experimental results proved that the
proposed localization system realized underwater centimeter
level positioning, which benefits operation tasks in a structure
environment.

Considering the marker recognition failure caused by illu-
mination and occlusion, we will focus on underwater image
enhancement to achieve a high recognition rate. Besides,
autonomous obstacle avoidance is also to be studied to
improve the robot application in the nuclear reactor pool.
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