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Abstract—Since the hard of hearing cannot 
communicate effectively with the non-disabled, which 
may cause various inconveniences. As an essential 
member of a harmonious society, it is particularly urgent 
to solve their communication problems with non-disabled 
people. Effective communication between the hard of 
hearing and the non-disabled has become possible with 
the continuous development of artificial intelligence. In 
this paper, an intelligent human-computer interaction 
system is designed to solve communication 
inconvenience between the hard of hearing and the 
non-disabled. This system combines artificial intelligence 
with wearable devices and classifies gestures with BP 
neural network, effectively solving the communication 
problem between the hard of hearing and the non-disabled. 

 
Index Terms—human-computer interaction, neural networks, gesture recognition, data gloves 

 

 

I.  INTRODUCTION 

UE to the inability to communicate effectively with the 

non-disabled, the hard of hearing will face various daily 

travel and life difficulties. As a member of a harmonious 

society, the hard of hearing is an indispensable and vital part of 

a socialist harmonious society. Other non-disabled people need 

to effectively solve the communication difficulties between the 

hard of hearing and the non-disabled to help the hard of hearing 

to integrate into society positively and optimistically. At 

present, the effects of auxiliary devices used by the hard of 

hearing to communicate with the non-disabled are not ideal. 

For example, the electronic artificial throat lacks precise 
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control of the time and pitch of voice. The use effect of 

visual-based sign language translation equipment is easily 

affected by the surrounding environment [1-5].  

Therefore, it is of great practical value to study a portable, 

efficient and accurate human-computer interaction device for 

the communication between the hard of hearing and the 

non-disabled [6]. With the development of the Internet of 

Things and the Mobile Internet, wearable devices have 

completed the transition from large-scale to small-scale, which 

has attracted extensive attention from society [7]. At present, 

China has a large group of the hard of hearing. With the 

development of the cause of the disabled in our country, there is 

an increasing demand for the hard of hearing to participate in 

society [8]. However, corresponding sign language interpreters 

are quite scarce [9-15], which causes many difficulties for hard 

of hearing people in learning, living, working and other areas 

where they need to communicate [16]. According to data from 

the Sixth National Census and the Second National Survey of 

Disabled Persons, the total number of persons with disabilities 

in China has reached more than 85 million, accounting for 

approximately 6% of the total population of China [17]. Among 

them are at least 20.57 million hard of hearing people [18]. 

However, the sign language industry in China is developing 

slowly. Only a few teachers' colleges and universities provide 

sign language courses in particular education majors [19]. Sign 

language education, particularly social training, is weak. In 

various industries such as culture, medical care, social security, 

sports, commerce, and social services, the lack of sign language 

interpreters makes it hard for the deaf to communicate 
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effectively with the outside world. For example, the hard of 

hearing always do not want to go to the hospital because of poor 

communication with doctors and it is considerably challenging 

to ask the police for directions, hard of hearing people have 

many difficulties in daily life. Therefore, developing an 

intelligent human-computer interaction system between the 

hard of hearing and the non-disabled will have a self-evident 

impact on the everyday communication between the hard of 

hearing and the non-disabled [20]. 

In this paper, we proposed an intelligent human-computer 

interaction system. In a variety of complex environments, it still 

maintains a high recognition rate. The gestures of the two hands 

of the hard of hearing were collected, and the data of the 

forearm were also collected to make the collected data more 

comprehensive and reflect the gestures of the hard of hearing 

more comprehensively. In addition, voice recognition is added 

and the recognition results are presented in the form of Unity 

3D animation, which makes it easier for the hard of hearing to 

understand, and this system completes the two-way 

communication between the hard of hearing and the 

non-disabled. 

II. HUMAN-COMPUTER INTERACTION SYSTEMS 

The human-computer interaction system designed in this 

paper is mainly composed of data gloves, Arduino Mega2560 

microcontroller, BP neural network, LD3320A voice module, 

wireless serial port module and the human model in Unity 3D. 

The overall human-computer interaction system for the hard of 

hearing and the non-disabled is shown in Fig. 1. 

The data glove in Fig. 1 is used to collect posture data of the 

hand and forearm, and there are five bending sensors installed 

in the five finger positions to detect the bending degree of the 

fingers. The bending sensor is based on the resistance carbon 

element. The bend sensor achieves a significant form factor on 

a thin, flexible substrate as a variable printed resistance. When 

the substrate is bent, the sensor generates a resistance that is 

related to the bending radius. The smaller the output radius, the 

higher the resistance value. Attitude sensors were used to detect 

the posture of the palm and forearm. The bending sensor is used 

to detect the bending degree of 5 fingers, and the attitude sensor 

is used to detect the motion state of the upper limbs [21].  

The calculation formula for the voltage of the bending sensor 

is given as Eq. (1). 
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The controller used to collect data is Arduino mega2560. The 

data formula of the analog voltage output in Arduino is given as 

Eq. (2). 
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A0 is the analog voltage output by the bending sensor at the 

analog port of the controller. When the bending angle of the 

bending sensor becomes more prominent, the resistance value 

of the bending sensor becomes smaller and the analog voltage 

distributed to the bending sensor decreases, A0 becomes 

smaller. The data detected by each sensor is received through 

the Arduino mega2560 control chip, and the corresponding AD 

conversion is performed, and the voltage data of the finger and 

wrist collected by the ADC is printed out with the serial port. 

Fig. 2 shows a block diagram of a human-computer 

interaction system for the hard of hearing and the non-disabled 

[22]. When the hard of hearing want to communicate with the 

non-disabled, the hard of hearing wear a data glove and makes 

gestures [23]. Using the bending sensor and the attitude sensor 

of the back of the hand and forearm to collect the bending 

signal of the finger of the hard of hearing and the 3-axis Euler 

angle data of the back of the hand and forearm, sending the 

collected data to the controller module. The collected data is 

wirelessly transmitted to MATLAB through the serial port. The 

gesture data is normalized and preprocessed to obtain the 

characteristic data. The purpose of normalization is to speed up 

training the network [24]. The purpose of changing a number to 

a decimal between (0,1) is to facilitate data processing. It is 

more convenient and faster to map the data to the range of 0 to 1 

for processing [25]. Then putting the data into the trained BP 

neural network as the input of the neural network to get the 

output feature vector [26]. The obtained feature vector is 

wirelessly transmitted to the Arduino microcontroller through 

the serial port. After receiving the instruction, the 

microcontroller controls the LD3320A voice module to emit a 

sound corresponding to the gesture and converting the gesture 

information of the hard of hearing into the voice information 

that non-disabled person can understand. Accomplish the 

purpose of the hard of hearing want to communicate with the 

non-disabled [27].  

When the non-disabled person wants to communicate with 

the hard of hearing person, the hard of hearing will press the 

button switch, then a non-disabled person can speak into the 

LD3320A voice module. The LD3320A voice module 

recognizes the sound. When the recognition is successful, the 

voice module sends a hexadecimal command to the Arduino 

microcontroller, and the Arduino microcontroller sends the 22 

human body angle data corresponding to the hexadecimal 

command to Unity. The first five digits of the first 11 digits are 

the degree of bending of the right-hand finger, and the last six 

 
Fig. 1.  The overall human-computer interaction system for the hard of 
hearing and the non-disabled. 

 
Fig. 2.  Block diagram of human-computer interaction system for hard 
of hearing and non-disabled. 
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digits are the x, y, and z-axis spatial angles of the right hand and 

the right forearm, and the first five digits of the last 11 digits are 

the degree of bending of the left-hand finger, and the last six 

digits are the x, y, and z-axis spatial angles of the left hand and 

the left forearm [28]. These data control the characters in Unity 

3D to make gesture animations corresponding to the voice. For 

example, translating the voice of learning this word into sign 

language actions will turn the voice information of the 

non-disabled person into a gesture animation that can be 

understood by the hard of hearing person, and complete the 

communication between the non-disabled person and the hard 

of hearing person [29]. 

III. GESTURE RECOGNITION AND VOICE RECOGNITION 

A. BP neural network 

In the gesture recognition algorithm, the BP neural network 

algorithm is selected. Because neural net-works are 

characterized by self-learning and self-adaptive capabilities. 

The BP neural network can identify at a fast speed and store and 

process information in parallel, which is very suitable for the 

sign language recognition of the hard of hearing. Moreover, the 

neural network has a strong anti-interference ability and strong 

fault tolerance. Therefore, in this paper, the BP neural network 

technology is applied to the human-computer interaction 

system of the hard of hearing and the non-disabled [30]. Fig. 3 

shows the BP neural network structure diagram. 

Suppose the input data of BP neural network is n vectors, 

represented by vector X, the vector X is given as Eq. (3). 

  0 1, , , nX x x x=   (3) 

The network generates m input data, represented by a vector 

Y, the vector Y is given as Eq. (4). 

 ( )
T

1 2, , , mY y y y=   (4) 

Then the network will correspond to n input nodes and m 

output nodes. In this way, the BP neural network can be 

regarded as a nonlinear mapping from the n-dimensional input 

space to the m-dimensional output space.  

BP neural network is divided into two parts in learning: 

forward propagation and back propagation. During forward 

propagation, the input information is transmitted from the input 

to the output layer after being processed by the hidden layer. 

The state of each layer of neurons only affects the state of the 

next layer of neurons. If the desired output cannot be obtained 

in the output layer, it will be transferred to back propagation, 

the error of the output layer node will be propagated back to the  

input to distribute to each connection node. Thus, the reference 

error of each connection point can be calculated, and the 

corresponding adjustment can be made according to the weight 

of each connection, so that the network can achieve the output 

which is suitable for the requirements, and the mapping from X 

to Y of the mode can be realized. The training process of the BP 

network is a process of constantly adjusting the weights. The 

training ends when the input error reaches the expected 

accuracy or reaches the preset number of learning and training 

times. 

B. Feedforward calculation of BP neural network 

In the learning stage of training the network, N training 

samples are set, and it is assumed that the input and output 

mode and the Xp network {dpk} in one of the fixed samples are 

used for training. For ease of writing, the notation of sample P 

is temporarily omitted from the formula.  

The input of the jth node of the hidden layer is given as Eq. 

(5). 
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The output of the jth node is given as Eq. (6). 

 ( ) net j jO f=   (6) 

The excitation function is given as Eq. (7). 
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where θj represents bias or threshold, and the positive θj is 

used to shift the excitation function to the right along the 

horizontal axis. The function of θ0 is to adjust the shape of the δ 

function. The smaller θ0 makes the δ function close to the step 

function, and the larger θ0 makes the δ function flatter. 

Take the derivative of Eq. (8) to obtain 

 ( ) ( ) ( ) net  net 1  net j j jf f f  = −
    (8) 

The output Oj of the jth node will be propagated forward to 

the kth node through the weighting coefficient Wjk, and the total 

input of the kth node of the output layer is given as Eq. (9). 
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The actual network output of the kth node in the output layer 

is given as Eq. (10). 

 ( ) net k kO f=   (10) 

The topological structure of the BP neural network model 

used in this system includes the input, hidden, and output layers. 

The number of nodes in the input layer and output layer has 

been determined in experiments. The most important thing is 

the number of nodes in the hidden layer. It needs to be 

estimated by calculation. Existing studies have found that the 

number of neurons in the hidden layer is related to the problems 

we need to solve, the degree of complexity, the characteristics 

of data samples and other factors. The number of hidden layers 

 
Fig. 3.  BP neural network structure diagram. 
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is determined as shown in Eq. (11-13). 

 m n 1 = + +   (11) 

 2m log n=   (12) 

 m nl=   (13) 

In the above formula, m represents the number of hidden 

layer nodes, l represents the number of output layer nodes, n 

represents the number of input layer nodes, and α represents a 

constant between 1-10.  

The number of nodes in the hidden layer should be less than 

N-1(N is the number of training samples); otherwise, the 

systematic error of the network model is independent of the 

characteristics of the training samples and tends to 0. This 

means that the established network model has not 

generalization ability and use-value. Similarly, the number of 

nodes in the input layer must also be less than N-1. Through 

these three formulas, the maximum and minimum values are 

calculated, and the prediction performance of each network is 

compared step by step. The corresponding number of nodes 

with the best performance is selected as the number of neurons 

in the hidden layer, and the number of neurons in the hidden 

layer is determined to be 2. 

The training process of the BP neural network includes three 

aspects: determining the input matrix, expected output and 

network layer parameters. First, the training sample set is read 

into the network, that is, the value of each gesture sensor, and 

then the expected output is read into the network. Finally, the 

BP neural network is trained according to the features of the 

training sample to create a neural network of the sample set. 

Table 1 is a set of data for each gesture of the training set 

sample. 

The first 5 data in table 1 are the five analog voltage data of 

the bending sensor installed on the glove finger. The last three 

are the data of the 3 Euler angles of the attitude sensor of the 

wrist joint, and the last 3 data are the Euler angle data of the 

elbow joint. A total of 11 bits of data can collect the gesture 

information of the whole hand more comprehensively. 

Correct recognition of gestures is critical. Table 2 shows the 

result of the feature vector output by the BP neural network 

corresponding to 9 common gestures. 

C. The design of voice recognition 

The voice recognition module used in this article is 

LD3320A, which combines the functions of voice recognition 

and voice output simultaneously, avoiding the disadvantages of 

using two modules and reducing the size of the system. As 

shown in Fig. 4, a human body 3D model is established in the 

human body modeling software. After the voice recognition 

module LD3320A recognizes the voice of a healthy person, the 

human body model will demonstrate the human body 

animation in Unity 3D for the hard of hearing to understand. 

 Fig. 5 shows a voice recognition flowchart; when the 

non-disabled person wants to communicate with the hard of 

TABLE I 
GESTURE CORRESPONDS TO A TRAINING SET SAMPLE OF A SET OF DATA 

Gestures Thumb Index Middle Ring Pinky X1 Y1 Z1 X2 Y2 Z2 

Digital 1 113 159 99 123 83 93.98 33.29 -23.09 -78.89 -37.67 -43.84 

Digital 2 120 176 167 122 91 93.64 39.03 88.14 -87.50 -44.81 -50.21 

Digital 3 121 102 162 162 117 115.74 16.62 -117.06 -74.75 -37.31 -74.73 

Digital 4 112 173 162 164 130 115.23 5.60 -58.52 -90.68 -31.32 -46.92 

Digital 5 164 158 165 158 135 93.47 22.63 -76.48 -91.86 -33.96 -40.62 

Digital 6 152 111 110 130 110 120.76 30.44 -86.96 -96.32 -38.98 -41.71 

Digital 7 120 142 124 136 129 99.05 0.68 -65.84 -83.56 -27.10 -60.18 

Family 173 177 174 175 172 43.29 -11.05 7.93 -137.25 43.08 22.01 

People 154 146 130 171 154 37.08 -11.76 20.36 -141.34 49.45 -3.53 

 
 TABLE II 

GESTURES CORRESPONDING TO EACH FEATURE VECTOR 

Feature vectors Gestures 

1 0 0 0 0 0 0 0 0 Digital 1 

0 1 0 0 0 0 0 0 0 Digital 2 

0 0 1 0 0 0 0 0 0 Digital 3 

0 0 0 1 0 0 0 0 0 Digital 4 

0 0 0 0 1 0 0 0 0 Digital 5 

0 0 0 0 0 1 0 0 0 Digital 6 

0 0 0 0 0 0 1 0 0 Digital 7 

0 0 0 0 0 0 0 1 0 Family 

0 0 0 0 0 0 0 0 1 People 

 

 
Fig. 4.  Human body model in Unity 3D. 

TABLE III 
THE RESULT OF GESTURE RECOGNITION 

Gestures A B C D 

Digital 1 98.0% 94.1% 93.1% 93.1% 

Digital 2 97.1% 95.1% 94.1% 94.1% 

Digital 3 96.1% 97.1% 96.1% 95.1% 

Digital 4 98.0% 96.1% 95.1% 94.1% 

Digital 5 97.1% 94.1% 95.1% 95.1% 

Digital 6 95.1% 96.1% 96.1% 94.1% 

Digital 7 96.1% 97.1% 96.1% 93.1% 

Family 98.0% 97.1% 95.1% 94.1% 

People 92.2% 93.1% 92.2% 93.1% 

 

 
Fig. 5.  Voice recognition flowchart. 
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hearing person, the non-disabled person will make a sound to 

the LD3320A voice module. The LD3320A voice module 

recognizes the sound. When the recognition is successful, the 

voice module sends a hexadecimal command to the Arduino 

microcontroller, and the Arduino microcontroller sends the 22 

human body angle data corresponding to the hexadecimal 

command to Unity. Table 4 shows the voice recognition 

corresponding to the database of the human body model. The 

first five digits of the first 11 digits are the degree of bending of 

the right-hand finger, and the last six digits are the x, y, and 

z-axis spatial angles of the back of the right hand and the right 

forearm, and the first five digits of the last 11 digits are the 

degree of bending of the left-hand finger, and the last six digits 

are the x, y, and z-axis spatial angles of the back of the left hand 

and the left forearm. These data control the characters in Unity 

3D to make gesture animations corresponding to the voice. For 

example, translating the voice of learning this word into sign 

language actions will turn the voice information of the 

non-disabled person into a gesture animation that can be 

understood by the hard of hearing person, and complete the 

communication between the non-disabled person and the hard 

of hearing person.  

D. Mathematical Model of Human Upper Limb in Unity 

Suppose the length of the forearm is d1, and the length of the 

palm is d2. The coordinates of the end of the forearm in the 

left-hand coordinate system are (x1, y1, z1), The coordinate of 

the palm end S in the left-hand coordinate system is (x2, y2, z2), 

The coordinate system is set at the elbow joint as shown in Fig. 

6. Setting a coordinate system O1XgYgZg, O2XgYgZg at the elbow 

joint and wrist joint respectively. By obtaining the spatial 

posture data γ1, θ1, ψ1, γ2, θ2, ψ2, of each limb relative to the 

left-hand coordinate system, the movement position of each 

limb at each time can be found. 

After projecting the end L of the forearm, the coordinates (x1, 

y1, z1) of the end L are given as Eq. (14). 
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The projection (x2
', y2

', z2
') of the end of the forearm S in the 

coordinate system O2XgYgZg is given as Eq. (15). 
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The forearm end S coordinates (x2, y2, z2) in the geographic 

coordinate system are given as Eq. (16). 
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Namely 
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The angle between two vectors in space is given as Eq. (18). 
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The angle between the palm and the forearm 1 2cos −  is 

given as Eq. (19). 
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Through these formulas, the spatial position of the forearm L 

and the palm S of the human body model in Unity 3D can be 

obtained, and the relative angle between the forearm and the 

palm can be calculated to control the movement of the human 

body model in Unity 3D. 

IV. EXPERIMENTS AND RESULTS 

The experiment results for the hard of hearing 

communicating with the non-disabled are reflected in the 

pictures of MATLAB. After the BP neural network is trained 

with the data gloves, the data is transmitted to MATLAB in 

real-time, which can realize the correct identification from 9 

kinds of gestures. MATLAB will pop up the picture 

corresponding to the gesture, and the voice module will emit 

the corresponding voice when the gesture is recognized. Fig. 7 

 
Fig. 6.  The position of the upper limbs of the human body in the 
coordinate system. 

TABLE IV 
VOICE RECOGNITION CORRESPONDING TO THE DATABASE OF THE HUMAN BODY MODEL 

Voice Data vector of human body model 

Learning 8 12 4 7 20 15 -30 4 130 0 -10 8 12 4 7 18 15 30 -4 130 0 10 

You 90 12 45 45 45 -30 30 -20 30 -180 -205 8 12 4 7 18 15 30 -4 50 -180 230 

One 100 12 30 30 30 -30 30 60 35 -18 -205 8 12 4 7 20 15 30 -4 50 -180 230 

Two 100 12 12 30 30 -30 30 60 35 -18 -205 8 12 4 7 20 15 30 -4 50 -180 230 

Three 100 30 12 12 12 -30 30 60 35 -18 -205 8 12 4 7 20 15 30 -4 50 -180 230 

Four 100 12 12 12 12 -30 30 60 35 -18 -205 8 12 4 7 20 15 30 -4 50 -180 230 

I 45 11 46 42 19 66 -74 -140 76 -113 -130 8 12 4 7 18 15 -83 -4 43 0 0 

Be 10 12 4 77 78 15 83 4 -14 -77 -161 8 12 4 7 18 15 -86 -4 42 0 0 

Deaf 8 12 4 58 59 15 83 4 16 56 93 8 12 4 7 18 15 -8 -4 43 0 0 

Home 8 12 4 7 18 15 -83 -4 27 162 180 8 12 4 7 19 15 83 4 23 -180 -180 
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shows the correct recognition of the numbers 1 to 2, people and 

family gestures. 

In the motion recognition experiment, four healthy 

volunteers (aged 22-26 years old, half male and female, two 

left-handed and two right-handed) were selected for the 

experiment, and each motion was repeated 20 times for each 

volunteer. In each motion, five samples were selected for 

collection at the sampling rate of 9600Hz. There were 102 

samples of each gesture and nine kinds of gestures from 1 to 9. 

Each volunteer collected a total of 918 sets of data. Table 3 lists 

the results of the recognition accuracy rate. Among them, A, B, 

C and D respectively represent four volunteers. 

In this system, after different volunteers put on the data glove, 

the range of the bending sensor and the attitude sensor is 

different. If the raw data collected by the data glove is used 

directly, the experimental results may be affected. In this paper, 

the maximum-minimum standardization is used to normalize 

the data, so that the indicators are in the same order of 

magnitude, convenient for comprehensive comparison and 

 
(a). Identification number 1 

 
(b). Identification number 2 

 
(c). Identification gesture family 

 
(d). Identification gesture people 

Fig. 7.  Recognition results. 
 

 
(a) Identification results of volunteer A 

 
(b) Identification results of volunteer B 

 
(c) Identification results of volunteer C 

 
(d) Identification results of volunteer D 

Fig. 8.  The confusion matrix of the performance. 

TABLE V 
THE RESULT OF VOICE RECOGNITION 

Voice A B C D 

Learning 93.3% 90% 86.7% 90% 

You 90% 86.7% 90% 86.7% 

One 93.3% 96.7% 90% 90% 

Two 86.7% 90% 93.3% 93.3% 

Three 90% 93.3% 90% 86.7% 

Four 86.7% 96.7% 96.7% 83.3% 

I 90% 90% 86.7% 86.7% 

Be 96.7% 93.3% 90% 90% 

Deaf 90% 86.7% 93.3% 93.3% 

Home 93.3% 90% 86.7% 90% 

Average 

correct rate 
91% 91.3% 90.3% 89% 
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evaluation. Maximum-minimum standardization is a linear 

transformation of the original data. Let min A and max A be the 

minimum and maximum values of attribute A, respectively, 

and map an original value x of A to the interval [0, 1] through 

maximum-minimum standardization. The value x' is given as 

Eq. (20). 

 
min

max min

x A
x

A A

 −
=

−
  (20) 

Fig. 8 shows the confusion matrix of the BP neural network. 

The rows correspond to the predicted classes, and the columns 

correspond to the real classes. The diagonal cells correspond to 

correct classification results. The cells outside the diagonal 

correspond to misclassified results. The right-most column of 

the confusion matrix graph represents the percentage of all 

examples predicted for each class that falls into the correct and 

false categories. These indicators are referred to as precision. 

The precision function is given as Eq. (21). 

  Precision 
TP

TP FP
=

+
  (21) 

where, TP is true positive that means the gestures sample 

was correctly identified. FP is false positive and means the 

gestures sample is wrongly classified. 

The rows at the bottom of the confusion matrix graph show 

the percentage of all examples belonging to each category, 

correctly and incorrectly classified. These metrics are 

commonly referred to as recall. Recall is the percentage of the 

true positives over the number of true positives and the number 

of false negatives. Recall function is given as Eq. (22). 

   Recall 
TP

TP FN
=

+
  (22) 

where, FN is the false negative that means the gestures 

sample does not belong to the current category. The cell in the 

lower right corner of the confusion matrix diagram shows the 

overall accuracy, which represents the accuracy of the overall 

judgment of the classification model. 

The result of the experiment that the non-disabled 

communicate with the hard of hearing is realized in Unity 3D. 

The non-disabled say the six words the number 1, number 2, 

number 3, number 4, study and you, and convert these sounds 

into human animations to show them to the hard of hearing, so 

that the hard of hearing can understand. As shown in Fig. 9. The 

voice recognition rate is shown in Table 5. The overall 

recognition rate of voice recognition was 90.4%. 

V. CONCLUSIONS 

In this paper, an intelligent human-computer interaction 

system for the hard of hearing and non-disabled is proposed. 

When the hard of hearing wants to communicate with the 

non-disabled, the system collects the gesture data of the hard of 

hearing in real time through the data glove, and BP neural 

network was used for classification, and finally broadcasts the 

result of the classification to the non-disabled by voice, so that 

the non-disabled can understand. The nine kinds of gestures are 

recognized, and the overall recognition rate is 95.18%. 

When a non-disabled person wants to communicate with a 

hard of hearing person, the LD3320A voice module recognizes 

the sound of the non-disabled person's voice, and uses the 

human body model in Unity 3D to express the gestures 

represented by the voice, so that the hard of hearing person can 

understand. The human-computer interaction system between 

the hard of hearing and the non-disabled completed in this 

paper effectively solves the communication problem between 

the hard of hearing and the non-disabled. The above 

experimental results also prove the possibility and real-time 

nature of this system.  
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