
 

 

The Vector Control Scheme for Amphibious Spherical 

Robots Based on Reinforcement Learning 

 Abstract –Due to variable underwater working conditions and 

unfavorable environments, it is difficult to design a controller 

suitable for underwater robots. This paper uses the adaptive 

ability of reinforcement learning to propose a two-layer network 

framework based on reinforcement learning to realize the control 

of amphibious spherical robots. The upper planning layer mainly 

plans the total torque of the robot at each moment according to the 

desired position and speed. The lower control layer mainly 

configures the parameters of the four machine legs according to 

the planning instructions of the upper planning layer. Through the 

cooperation of the planning layer and the control layer, the 

adaptive motion control of the amphibious spherical robot can 

finally be realized. Finally, the proposed scheme was verified on a 

simulated amphibious spherical robot. 

 
 Index Terms - Reinforcement learning; Amphibious spherical 

robot; Motion control.  

 

I.  INTRODUCTION 

 Compared with other types of underwater robot platforms, 

Autonomous Underwater Vehicles (AUV) have the advantages 

of high autonomy and large detection range. AUV has been 

widely used in the fields of marine environmental monitoring, 

resource investigation, security and defense, etc. Due to the 

complexity and time-varying nature of the underwater 

environment and the uncertainty of the underwater robot 

system, these factors will have an impact on the stability and 

reliability of the underwater robot system. Therefore, the design 

of an accurate and reliable controller suitable for underwater 

robots has attracted many scholars' attention [1], [2]. With the 

rapid development of artificial intelligence technology, its 

application in unmanned systems has gradually become the 

focus of attention of various countries [3]. Through the use of 

advanced artificial intelligence methods, the AUV's 

environmental perception, behavioral decision-making and 

underlying control capabilities can be improved, so that it can 

efficiently complete underwater tasks. In recent years, 

researchers have tried to apply various intelligent methods to 

the AUV system platform to improve its autonomy and 

intelligence. 

The design of the control method is one of the most 

important parts of the control system, which enables the 

underwater robot to follow instructions to move accurately in 

the underwater environment. The design of the control method 

affects the response speed, stabilization time and overshoot 

amplitude of the robot in the process of motion. Due to the 

particularity of the underwater environment and the motion 

control of underwater robots with multiple degrees of freedom, 

the design of underwater robot control is more difficult than that 

of land robots such as unmanned vehicles. At present, the 

conventional controller methods applied to underwater robots 

mainly include PID control, fuzzy control, sliding mode control 

and adaptive control. Tanakitkom K et al. proposed a low 

computational cost PID-based control system for driving 

underwater robots [4]. Behrooz R et al. proposed an optimized 

fuzzy control algorithm that can realize 3D path planning of 

underwater robots in complex underwater environments 

through sonar models [5]. Kantapon developed a sliding mode 

heading control system for over-actuated, hover-capable AUVs 

operating over a range of forward speeds [6]. Lakhekar G V 

combines fuzzy control with adaptive control and dynamically 

adjusts the adaptive law of controller parameters through fuzzy 

logic [7]. However, these methods have some shortcomings that 

the model parameters are difficult to determine in practical 

applications. In order to simplify the problem, many controllers 

use linear models or decouple the models. This setting fails to 

fully consider the uncertainties and special disturbances of the 

underwater environment, and it is difficult to complete the 

precise autonomous control of the AUV. 

The controller of reinforcement learning maximizes the 

cumulative reward obtained by interacting with the 

environment, and can achieve autonomous control [8]. 

Reinforcement learning does not have to rely on the dynamic 

model of the system platform, which weakens the influence of 

model accuracy on control. And it has better adaptive ability in 

dynamic environment, which makes it attract the attention of 

robot control field. At present, in the field of unmanned aerial 

vehicle (UAV) control and unmanned driving, the application 

of reinforcement learning has achieved many results. 

Fernandez-Gauna et al. used continuous acotr-critic automatic 

learning machine (CACLA) to achieve AUV Speed control [9]. 

Walters et al. adopted a model-based dynamic programming 

method for AUV control experiments in a real environment 

[10]. The dynamic model is obtained by real-time learning in 

experiments. Carlucho et al. designed a deep reinforcement 

learning method with a deterministic behavior-evaluation 

framework based on the DDPG method to realize the 

underlying control of AUV [11]. Knudsen et al. designed a dual 

controller [12]. The controller based on the depth deterministic 
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strategy gradient method is responsible for the movement in the 

horizontal plane, while the PD controller is responsible for the 

movement in the vertical plane. 

Therefore, we hope to propose a motion control scheme 

suitable for amphibious spherical robots, which can adapt to 

variable underwater working conditions and has versatility. In 

response to these needs, this paper uses the adaptive ability of 

reinforcement learning to propose a two-layer network 

framework based on reinforcement learning to realize the 

control of the amphibious spherical robot. First, the combined 

force control of the amphibious robot is achieved through the 

training of the lower control layer. Then, by calling the lower 

control layer to train the upper planning layer, the total torque 

of the robot at each moment can be planned according to the 

desired position and speed. Through the cooperation of the 

planning layer and the control layer, the movement of the 

amphibious spherical robot can finally be realized. Compared 

with traditional control strategies, the proposed scheme does 

not depend on precise model parameters and has strong 

adaptability. In addition, the two-layer architecture design can 

shorten the training time of reinforcement learning and has 

strong versatility. 

The rest of this paper is organized as follows. Section II 

presents a brief introduction about our new generation 

amphibious spherical robot. The   background   knowledge   

about   reinforcement   learning and the general framework  of  

our  proposed  method for  the amphibious spherical robots is 

presented in Section III. Experiments and results are provided 

in Section IV to assess the performance of the proposed 

approach. Section V provides a conclusion of the paper. 

 

II. THE STRUCTURE OF THE AMPHIBIOUS SPHERICAL ROBOT 

In this section, we give a brief introduction about our new 

generation amphibious spherical robot and sensors mounted on 

the robot.  

 On the basis of the robots mentioned in references [13]-

[17], a new generation of amphibious spherical robots with 

more perfect performance has been developed. The structure of 

the robot is shown in Fig. 1. The appearance of the amphibious 

spherical robot is designed to be spherical in order to reduce the 

resistance of underwater movement. The amphibious spherical 

robot consists of two parts: the control part and the drive part. 

The control part is located in the upper hemisphere of the robot. 

It is mainly responsible for the perception of the environment 

and the acquisition of its own state information, as well as the 

control of the robot. It is equipped with binocular industrial 

camera inertial sensor, GPS positioning module and depth 

sensor. The driving part is located in the lower hemisphere of 

the robot. It is mainly responsible for the movement of the 

amphibious spherical robot on the road and in the water. The 

drive part includes water jet and steering gear. The maximum 

speed of this amphibious robot in the water can reach 60 cm/s, 

and the maximum crawling speed of the robot on land is 

6.05cm/s. 

 

 
Fig. 1. The structure of proposed amphibious spherical robot. 

 

 
Fig. 2. The structure of the mechanical leg. 

 In order to enable the robot to work both on land and 

underwater, a mechanical leg is designed, and the structure is 

shown in Fig. 2. The mechanical leg consists of three joints, 

three connecting rods and a water-jet thruster. The three joints 

are TC joint (Thoraco-Coxal joint), CTr joint (Coxa-

Trochanteral joint) and FTi joint (Femur-Tibia joint). TC joint, 

CTr joint and FTi joint correspond to TC servo, CTr servo and 

FTi servo respectively. The three connecting rods are hip bone 

connecting rod, femoral connecting rod and tibia connecting 

rod. The water jet thruster can generate thrust in the water to 

propel the robot. The servo on each mechanical leg can control 

the angle of the mechanical leg to change the direction of thrust 

generated by the water jet thruster. By configuring the 

parameters of the servo and the water jet thruster, the desired 

torque can be generated, so as to realize the motion control of 

the robot. 

III. METHOD 

In this section, a reinforcement learning scheme suitable 

for amphibious spherical robots is proposed. It is used to control 

the underwater movement of amphibious spherical robots. 

A. Reinforcement learning statement 

In the past, the application of reinforcement learning in the 

field of robot control was limited to low-dimensional discrete 

state space and action space. However, complex tasks in the real 

world usually have high-dimensional state spaces and 

continuous action spaces. In 2015, the DeepMind team 

proposed a DQN algorithm combining deep neural networks 

and reinforcement learning [18], which solved the problem of 

high-dimensional input. But it is still difficult to apply DQN to 

continuous-action tasks. On the basis of deep reinforcement 



 

 

learning, Lillicrap et al. designed a deep deterministic policy 

gradient (DDPG) method for the continuous state/action space  

to realize the control of continuous actions. 

 Reinforcement learning generally contains two main parts: 

Agent and environment. Its basic idea is to make the agent learn 

the strategy of completing specific tasks in the process of 

interaction with the environment. Agents continuously adjust 

their strategies to deal with the environment according to the 

strategies they have learned and the feedback they have 

obtained from the environment until they obtain the maximum 

reward. Reinforcement learning problems can be modeled by 

Markov Decision Process (MDP). MDP is defined by the four-

tuple <S, A, R, W>, where S is the set of environmental states, 

A is the set of agent actions, R is the reward function, and W is 

the state transition function. In each time, the agent can get an 

observation St of the current state. Let ���|�� � ��	
 ��|�
 � �� be the probability that the agent will take action 	
 

when the state is �
, which is the action strategy of the agent. In 

each time, the agent can get an observation �
  of the current 

state. Then the Agent takes action at based on the current state �
 and action strategy. At time t+1 after the end of the action, 

the state of the environment changes, and the agent gets rewards �
�  and observations of the new state �
� . Then the agent 

adjusts its action strategy based on the rules determined in 

advance. This process is continuously executed until the 

number of learning times or learning goals are reached. The 

cumulative reward U in the learning process is the attenuated 

sum of all rewards obtained, which can be defined as: �
 � �� � γ�� � ���� � ⋯                      (1) 

where γ ∈ �0,1�  is the reward discount factor. Since the 

purpose of reinforcement learning is to obtain the optimal 

action strategy by maximizing the cumulative reward, it is 

necessary to consider the influence of the state of the agent and 

the actions taken on the cumulative reward. Then the action 

value function ����, �� can be defined as ����, �� � ���
|�
 � �, 	
 � ��                    (2) 

 The DDPG structure includes an actor network with a 

parameter of �� and a Critic network with a parameter of � . 

The actor network is used to generate the action strategy � of 

the agent, and the critic network is used to judge the quality of 

the action and guide the update of the action. Since the learning 

process of a single network is not stable, the strategy network 

and the value network are divided into a current network and a 

target network respectively. The current network and the target 

network have the same structure and different update 

frequencies. The Critic current network is responsible for 

updating the value network parameter �  and calculating the 

current Q. The Critic target network is responsible for 

calculating the Q' part of the target Q. The loss function of the 

current value network is defined as 

!�� � � �
" ∑ $%�&% ' �(�
%, 	
% , � )�"%*�         (3) 

where 

&% � + �% , ,-.%
�% � ��(�
�% , 	
�% , � / ), -01 ,-.%       (4) 

m is the number of samples, $% is the weight corresponding to 

sample j, �(�
%, 	
% , � ) is the action value of sample j when the 

state is �
, which is evaluated by the current value network, &% 

is the target action value of sample j calculated by the target 

value network. �%  is the instant reward obtained by the sample 

j taking action 	
  when the state is �
 , and � is the discount 

factor. The actor current network is responsible for updating the 

policy network parameters �� and selecting the current action 	
 according to the current state �
. The actor target network is 

responsible for selecting the optimal next action 	
/  according 

to the next state �
/  sampled in the empirical playback pool. The 

loss function of the current actor network is defined as 

!���� � ' �
" ∑ �(�
%, 	
%, � )"%*�              (5) 

 The target value network and target strategy network are 

updated in the following ways: 

� / ← 4� � �1 ' 4�� /
                      (6) 

      ��́ ← 4�� � �1 ' 4���́                       (7) 

where 4 is the soft update coefficient, and the update speed of 

the neural network can be controlled by adjusting 4. 

B. General Framework 

Considering the motion pattern of the amphibious 

spherical robot in the underwater environment, a two-layer deep 

reinforcement learning network based on DDPG is proposed. 

The structure diagram of the whole scheme is shown in Fig.3. 

The proposed control scheme can control the amphibious 

spherical robot to generate the corresponding leg angle and 

thrust configuration according to the desired position, so as to 

realize the underwater motion control of the amphibious 

spherical robot.  

 
 

Fig.3. General framework for the proposed two-layer reinforcement learning 

neural network. 
 

The proposed two-layer reinforcement learning neural 

network includes two parts: the upper planning layer and the 

lower control layer. The operating frequency of the upper 

planning layer is 1 Hz, and the operating frequency of the lower 

control layer is 10 Hz. Avoid damaging the robot by setting the 

drive interval. The upper planning layer mainly plans the total 

torque of the robot at each moment according to the desired 

position and speed. The input of the upper planning layer 

includes the desired position and speed and the state of the 

robot. The output of the upper planning layer is the total torque 

at time t, which is mainly used to guide the lower controller to 

produce corresponding motion. The lower control layer mainly 

configures the parameters of the four machine legs according to 



 

 

the planning instructions of the upper planning layer. The input 

of the lower control layer is the total output torque of the upper 

planning layer. The output of the lower control layer is the 

parameter configuration of the four machine legs, which can 

configure the angle and thrust of the four machine legs to 

control the movement of the robot. Through the monitoring of 

sensors, the observation of the robot state can be obtained, 

which is the feedback of the environment. By judging whether 

the robot achieves the expected goal, the upper planning layer 

can be rewarded �67899:9; . By judging whether the robot 

generates a total torque 	67899:9;, the lower control layer can 

be rewarded �<=9
>=7. 
C. The Lower Control Layer 

 The responsibility of the lower control layer is to generate 

a suitable machine leg configuration based on the control signal 

of the upper planning layer, so as to generate the desired 

resultant force to push the robot. Each time, the input of the 

lower control layer includes the observation of the robot state 

and the expected resultant force from the upper planning layer. 

The output of the control layer is the state configuration of the 

robot's four legs. 

 In the process of robot motion control, we simplified the 

robot model. We fixed the tibial joints and tibial joints of the 

amphibious spherical robot so that the amphibious spherical 

robot can only move on the surface of the water. Therefore, the 

movement of the robot can be realized by the angle of the hip 

joint of each leg and the thrust of the water jet. The relationship 

between the torque and the configuration of the leg parameters 

is shown in Fig.4. The state �<=9
>=7  of the robot can be 

represented by a vector, which consists of two parts �?9;@7  and 

�AB>CD
. �?9;@7  is the angle of each mechanical leg, and �AB>CD
 

is the thrust generated by the water jet on each mechanical leg. 

The desired motion of the robot can be achieved by properly 

configuring the state of  four legs for the robot. In addition, the 

error between the desired resultant force and the actual resultant 

force is also regarded as a state. In order to ensure that the 

resultant force generated remains stable, a flag state is also 

regarded as an observation state, which indicates the duration 

of the resultant force. This yields an 11D action space. The goal 

of the control layer is E<=9
>=7 , which comes from the planning 

layer. E<=9
>=7  represents the expected sum torque of the robot, 

which is a two-dimensional vector. It can be calculated by the 

planning layer according to the desired position and speed. The 

neural network of the planning layer is represented by a four-

layer neural network. The receiving input of the neural network 

is the state �<=9
>=7  and target 	67899:9;  of the robot. The 

output of the natural network is action 	<=9
>=7, which is the 

configuration parameter of the four mechanical legs. The value 

function of the planning layer is modeled by a similar network, 

but there is only one linear unit in the output layer.  

 According to the requirements of the expected total torque, 

by reasonably configuring the parameters of each mechanical 

leg, it can not only realize the expected motion of the 

amphibious spherical robot, but also protect the mechanical 

structure, save energy and increase the endurance time. 

According to this, when the expected total torque of the robot 

is given by the planning layer, the total reward function of the 

control layer is defined as: �<=9
>=7 � $F�G
 ' G>�A�G
 ' G>�             (8) 

where G
H� is the thrust of the water jet motor at the previous 

moment. The reward function �<=9
>=7  is about the reward 

function of the thrust of the water jet motor, which is used to 

reward the error between the expected resultant force and the 

actual resultant force.  

 

 
Fig.4. The relationship between the torque and the configuration of the leg 
parameters. 

D. The Upper Planning Layer 

The function of the planning layer is to generate 

corresponding action planning signals according to the required 

position information. Compared with the control layer, 

planning does not directly control the robot, but generates the 

goal of the control layer to control the movement of the robot. 

Through the cooperation of the planning layer and the control 

layer, the movement of the amphibious spherical robot can 

finally be realized. Therefore, the planning layer can be 

regarded as a transition layer, which converts the input 

instructions into commands that the robot can execute. Each 

time, the input of the planning layer includes the desired 

position and the feedback of the state. The output of the 

planning layer is the expected resultant force, which is also the 

input of the control layer. 

In order to achieve precise control of the speed and position 

of the amphibious spherical robot, the feedback state of the 

planning layer includes position information. Each state �67899:9;  is a vector, which contains position and velocity 

characteristics. �6=D:
:=9  is a two-dimensional coordinate 

vector, which is the position feedback of the amphibious 

spherical robot. And �IJ@@K  is also a two-dimensional 

coordinate vector, which represents the speed of the robot. �?LL@7@>8
:=9  is also a two-dimensional coordinate vector, 

which represents the acceleration  of the robot. In addition, in 

order to keep the robot stable at the desired position, a flag state 

is also regarded as an observation state, which represents the 

maintenance time of the robot at the desired position. Therefore, 

the state space of the planning layer is a 7D space. The output 

of the planning layer is a resultant force, which is the goal of 

the control layer. Due to the simplification of the motion of the 

amphibious robot, the output of the planning layer is a vector in 

a two-dimensional plane. The neural network of the planning 

layer is represented by a three-layer neural network, which 

regards �67899:9;  and E67899:9;  as inputs, and outputs 



 

 

	67899:9;. The planning layer value function is modeled by a 

similar network. 

In order to ensure that the amphibious spherical robot can 

reach the desired position in the water, the reward function is 

also designed. The reward function of the amphibious spherical 

robot moving in the water is defined as �67899:9; � $J�J                              (9) 

where �J is the position reward. It is used to reward the error 

between the desired position and the actual position 

 Through the constraints of the above four reward functions, 

accurate planning of the motion of the amphibious spherical 

robot can be realized 

IV. SIMULATION AND RESULTS 

 In this section, the two-layer reinforcement learning 

motion control scheme for the amphibious spherical robot is 

verified by simulation. The performance of the lower control 

layer and the upper planning layer are verified and analyzed 

respectively. 

A. Experimental Setup 

 In the simulation, OpenAI gym and tensorflow were used 

to verify the proposed motion control scheme. OpenAI gym is 

Open source interface to reinforcement learning tasks. In the 

simulation environment, a simple model based on the shape and 

parameters of the amphibious spherical robot is built. The basic 

parameters of the robot in the simulation environment are 

exactly the same as those of the actual robot. In addition, due to 

the simplification of the robot movement, the tibial joint and the 

tibial joint of the amphibious spherical robot are fixed, so the 

amphibious spherical robot can only move on the surface of the 

water. Reinforcement learning is trained by a computer with a 

main frequency of 2.2GHz and a memory of 8Gb. 

B. Experimental Result 

 In the simulation, the control layer is first trained 

separately. The training process of the control layer is shown in 

Fig.5. It can be seen from the figure that when the training 

iteration reaches 300 times, the control layer can already get a 

higher reward. It implies that the control layer can generate 

corresponding leg configurations according to the desired 

resultant force. 

 

 
Fig.5. Control layer learning curves. 

 

In order to verify the control effect of the control layer, the 

control layer is set to track a desired resultant force in the 

simulation. The resultant force of this desire is defined as 

MN
 � .sin �R
�&
 � .S0��R
�                                     (10) 

where d = 100 is the magnitude of the resultant force, and α is 

the direction of the resultant force. The error of the resultant 

force generated by the control layer and the desired resultant 

force is shown in Fig.6, where Fig (a) is the amplitude error, 

and Fig (b) is the direction error. It can be seen from the figure 

that the control layer can generate accurate resultant force by 

setting the parameters of the legs. 

 
(a)                                                      (b) 

Fig.6. The error between the desired resultant force and the actual resultant 

force. (a) Amplitude error. (b) Angle error. 

 

In the simulation, the planning layer was also trained 900 

times, and the training results are shown in Fig.7. As can be 

seen from the figure, when the number of training reaches 300 

times, the planning layer can already get a higher reward score, 

which means that the planning layer can generate a reasonable 

joint effort plan based on the desired location. 

 

 
Fig.7. The planning layer learning curves. 

 

The robot is set to track a square trajectory in order to verify 

the control effect of the planning layer, where the side length of 

the square trajectory is 100cm. The error of the robot trajectory 

between the desired trajectory on the x-axis and the y-axis is 

shown in Fig. 8, where the error of the x-axis in the Fig. 8(a) 

and the error of the y-axis in the Fig. 8(b). The results show that 

the robot can still track the desired trajectory steadily despite 

some fluctuations in the motion trajectory. 

 

 
     (a)                                                      (b) 

 

Fig.8. The error between the desired position and the actual position. (a) Error 
in the x-axis direction. (b) Error in the y-axis direction. 
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To realize the motion control of the robot, the proposed 

two-layer reinforcement learning control strategy requires the 

cooperation of the planning layer and the control layer. In the 

simulation, the effect of the proposed strategy is verified by 

letting the robot track a circular trajectory. The circular 

trajectory can be defined by equation (10), and its radius is 100 

cm. The trajectory of the robot is shown in Fig. 9. The error of 

the robot real trajectory and the desired trajectory is shown in 

Fig. 10, where Fig. 10(a) is the error of the x-axis, and Fig. 10(b) 

is the error of the y-axis. It can be seen from the figure that 

although there are some fluctuations in the motion trajectory, 

the robot can still basically track the desired trajectory 

 
Fig.9. The trajectory of the robot 

 
(a)                                                     (b)  

Fig.10. The error between the desired position and the actual position. (a) Error 

in the x-axis direction. (b) Error in the y-axis direction. 

V. CONCLUSION 

A two-layer reinforcement learning scheme for 

amphibious spherical robots is proposed. Through the planning 

of the upper layer and the hardware control of the lower layer, 

the proposed control scheme can realize the desired motion of 

the amphibious spherical robot on the horizontal plane. The 

simulation experiment verifies the feasibility and stability of the 

proposed scheme.  
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