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 Abstract – This research investigates the multiple robotic 

systems navigation in an unknown environment problem. As an 

attempt to solve this challenge, a navigation strategy based on D* 

Lite search algorithm is proposed. To ensure an optimal path to 

the goal, we implemented the D* Lite algorithm and improved the 

safety of the algorithm by defining the non-reachable cells 

accordingly to the size and position of the obstacles. The 

collaborative navigation is ensured by a fault tolerance strategy 

based on a low computation cost fault detection and leader 

switching algorithm. The performed experiments in a water tank 

and the simulation demonstrated that the search algorithm can 

safely find the shortest path to the goal. The robustness of the path 

planning algorithm is demonstrated further with relatively few 

collisions occurrence. Also, the simulation shows that the robots 

can safely adapt their formation from V-shape to line shape when 

obstacles are present in the environment. However, the formation 

navigation presents some inefficiencies in terms of accuracy. The 

developed strategy will be extended in future works with more 

experiments. 

 
 Index Terms – D* Lite, spherical underwater robot, 

collaborative navigation, fault tolerance, gazebo. 

 

I.  INTRODUCTION  

 Current developments in the field of robotics have led to a 

growing interest in the application of robots in underwater 

operations. The intervention of a single AUV in marine 

environment requires the equipment of that robot with several 

sensors and other onboard electronics, making the overall 

system very heavy. In addition, the robot has to stay compact in 

an attempt to achieve greater flexibility and maneuverability. 

These technical constraints suggest the use of a team of robots 

in underwater missions. 

A crucial issue to consider when deploying a fleet of robots 

is the safety and reliability of navigation, especially in a 

challenging environment. The marine environment presents a 

particular complexity highlighted by the dynamics of the water 

and the presence of a priori unknown different types of 

obstacles. Several studies are conducted on how to move a robot 

from a starting point to the target while considering these 

constraints. The problem of optimal path finding in a dynamic 

unknown or partially known environment is widely explored in 

the literature [1]-[3]. With a large variety of solutions proposed 

so far [4]-[9]. [1] proposes a classification of those methods in 

two categories: Geometric Model Search Methods and Bionics 

search methods. Geometric methods are widely used in path 

planning problems and show strong performances and less 

computation [2]. Among those methods, those based on 

heuristic search like Djikstra, A*, D*(Dynamic A*) and D* Lite 

have gained wide spread application in autonomous vehicle and 

attract the interest of the research community [4][5]. D* Lite 

algorithm is based on Djikstra but is more efficient for dynamic 

search. Its suitability for underwater dynamic path search has 

been demonstrated in [5] and [6]. [7] and [8] have proven the 

efficiency of D* Lite for an AUV through 2D and 3D 

simulations. 

  In collaborative navigation, robots must be able to move 

while being aware of the position of other robots and 

maintaining a coordinated formation. Different coordinated 

navigation approaches have been explored with great attention 

[10]-[14]. [12] proposed a blockchain-based navigation 

coordination algorithm for autonomous robots. This algorithm 

has been implemented on the amphibious spherical underwater 

robots (SUR) in terrestrial environment with satisfactory 

performance and has solved the problem of mission tracking 

when the group leader is out of service. The main drawback of 

this algorithm is the computation cost and the need for reliable 

communication. Indeed, the fault tolerance relies on the 

possibility of electing a new leader by the non-faulty robots. 

Considering the constraints related to communication in 

underwater environment, the development of a navigation 

strategy requiring a minimum of communication is necessary. 

The effectiveness of the navigation depends also on the use of 

an efficient algorithm to find the shortest path between the 

starting point and the goal as well as to update the path as the 

navigation progresses according to the presence of obstacles. 

In this work, we implemented the D* Lite algorithm with 

consideration of the position and size of the obstacles as well as 

the preservation of a relative safety distance between the 

obstacles and the robots. The overall effect is to adjust the 

formation's shape of the robots according to the presence of 

obstacles. 

This work is organized as follow: Section II gives the 

details of the spherical underwater robot’s structural design, 

section III explains the navigation approach, section IV presents 

the strategy to control the robots' formation and tolerance to 

failure, section V is an exposition of the results obtained by 

carrying out an experiment of the D* Lite algorithm and 

simulating the navigation of a set of robots in Gazebo, and 

section VI finally gives the conclusion of this work and some 

future perspectives. 

 



II.  STRUCTURAL DESIGN OF THE SUR 

 Several versions of the spherical underwater have been 

designed in the past. In its current version, the main components 

of the spherical robot are the hull composed of two 

hemispheres, a cylindrical waterproof box, the servomotors and 

the thrusters. Fig.1 shows the structural design of the robot. The 

two hemispheres, made with acrylic material, are designed to 

bear the pressure at a water depth of at least 8 m. Each of them 

has a diameter of 40cm and 3mm thickness. Since the 

hemispheres are not waterproof, the robot is equipped with a 

waterproof box that contains electronic components such are 

the different sensors, batteries, and onboard controllers. The 

version used in this research is composed of 8 servomotors and 

4 propellers to steer the robot in a 3D motion. 

  
                                       (a)Front view 

      
                    (b) Side view                                              (c) Top view 

Fig. 1 Structure of the spherical underwater.  

III.  UNKNOWN ENVIRONMENT NAVIGATION 

A. Goal-directed navigation approach 

 Planning a trajectory is a key task for an underwater 

vehicle’s navigation. When the optimal trajectory is planned in 

a non-deterministic domain, only local navigation can be 

considered. A perception of the environment is provided by the 

robot sensors (camera, acoustic beam, etc.). This information is 

processed to detect the presence of eventual obstacles and to 

adjust the robot behavior accordingly. The selection of an 

optimal and dynamic path planning technique thus becomes the 

most important step in the navigation task. In the goal-directed 

navigation, the position of the robot is first initialized on the 

map and the goal settled. The robot computes the shortest path 

to the goal from the starting points by considering the a priori 

known obstacles as non-reachable cells, then follows that path. 

During the navigation to the goal, the agent receives pose 

estimation and environment information from its sensors, then 

updates the map vertex by assigning a reachable or unreachable 

label to cells and, and finally computes the shortest path from 

its current position to the fixed goal. The shortest path depends 

on the location of traversable cells as well as the cost of moving 

from the robot’s position to an adjacent cell. From any cell 

belonging to the computed path, its successor is, therefore, the 

most optimal with minimum cost. Among the various 

algorithms presented in the literature, the D* Lite [4][5] offers 

many advantages in terms of finding the optimal solution and 

minimizing computation cost, with optimal path finding when 

implemented in underwater as well as terrestrial environment.  

The D*Lite is an optimization of the D*(Dynamic A*) which is 

based on LPA*(Longlife Planning A*), an incremental version 

of A*. LPA* is very useful in graph search where vertices are 

added or deleted over time 

  D* efficiently recalculate the shortest path from the 

robot’s current position by only computing the goal path that 

has been modified. Which means that even if the environment 

change, the algorithm will not recompute the path unless a 

change occurs on the previously computed path.  

In Fig.2 we have an example of D* Lite search. The initial path, 

in blue, is recalculated when some obstacles are detected on the 

path. The obtain path, in green isn’t recompute when the 

changes that occur in the environment don’t concern the path. 

B.  D* Lite Implementation 

 D* Lite repeatedly determines the shortest path from the 

robot’s current position, sstart vertex to the goal vertex sgoal. The 

environment is modeled as an eight fully-connected graph. 

D* is based on incremental search. The expansion direction of 

the search is given by the rhs(s) value (1). The rhs(s) is a 

heuristic that corrects the cost value in case of local 

inconsistency: when the cost of moving to edge s is different 

from the path length to s. From the robot’s current position, the 

algorithm calculates the cost of the 8 surrounding vertices. The 

lowest cost will give the next point of the path.  

To estimate the value of the grid’s edges, the algorithm uses 

priority queue arrangement parameters. The priority vertex to 

expend in the priority queue is determined by the key 

k(s)=[k1(s); k2(s)]. 

 The key k is a value for comparison. The formula to 

calculate it is given in (2) and (3). 

�ℎ���� � � 0 
� � � ��
���
���∈������� ������ � ���, ���� (1) 

Where, S is the finite set of vertices of the graph, �������� ⊆� is the set of successors of the vertex � ∈ �, ���, ��� is the cost 

of moving from edge s to edge s', g(s) is the total length from 

start to edge s. �����  �  �
������, �ℎ�����  �  ℎ���� (2) 

� ���   �  �
������, �ℎ����� (3) 

Where h(s,goal) is the goal distance from the vertex s.  

 The steps of the algorithm are summarized given in table 

1. To increase the safety of the path, we added to the algorithm 

a vertex update program that provides the required change to 

the vertex when an obstacle is detected. Fig.1 summarizes the 

working principle of the navigation strategy: the algorithm 

computes the shortest path from the robot’s current position to 

the goal. If some obstacles are detected, then the edges of the 

graph are updated according to the size of obstacles and the 

shortest path recomputes again. 

 



TABLE I 

D* Lite algorithm 

Procedure CalculateKeys(s) 

{01} Return !�
������, �ℎ����� � ℎ���"#�", �� � �$; �
������, �ℎ�����& 
Procedure Initialize() 

{02} ' � ∅; 
{03} �$ � 0 

{04} For all �)� �ℎ���� � ���� � ∞; 
{05} �ℎ�+�,-#./ � 0; 
{06} '. 1��2����,-#. , !ℎ���"#�" , �3�4�; 0&�; 
 
Procedure UpdateVertex(u) 

{07} 
� �+��� 5 �ℎ����  678 � ∈ '/ '. '9:
�2+�, �
;��;
�2<2=���/; 
{08} 2;�2 
� ����� 5 �ℎ���� 678 � ∉'� '. '9:
�2+�, �
;��;
�2<2=���/; 
{09} 2;�2 
� ����� � �ℎ���� 678 � ∈ '� '. ?2�@A2���; 
 

Procedure UpdateEdgesCost(S) 

{10} 1� @B��
�;2 �� C��2; 

{11}D@�9��2 �@� 9
��
B;2 �2;;��
, �
E2_
�; 

{12}'9:
�2 2:�2� �@��; 
 
Procedure ComputeShortestPath() 

{13} Gℎ
;2 �'. H@9<2=� � I D
;��;
�2<2=���"#�"�@� �ℎ����"#�"� J����"#�"�� 

{14} � � '. C@9��; 

{15} �-.� � '. C@9<2=��; 
{16} �3�4 � D
;��;
�2<2=���; 
{17} 
� ��-.� I �3�4� 

{18} '. '9:
�2��, �3�4�; 
{19} 2;�2 
� ����� J �ℎ����� 

{20} ���� � �ℎ����; 
{21} '. ?2�@A2���; 
{22} �@� 
;; � K�2:��� 

{23} 
� �� 5  �,-#. ��ℎ���� � �
�+�ℎ����, ���, �� � ����/; 

{24} '9:
�2L2��2M���; 
{25} N;�2 

{26} �-.� � ����; 

{27} ���� � ∞; 

{28} �@� 
;; � K�2:��� ∪ P�Q 

{29} 
���ℎ���� � ���, �� � �-.�� 

{30} 
� +� 5  �,-#. /�ℎ���� � �
��R∈STUU���+���, ��� � �����/ ; 
{31} '9:
�2L2��2M���; 
 

Procedure Main () 

{32} �.#�" � ��"#�"; 
{33} 1�
�

;
E2��; 
{34} D@�9��2�ℎ@��2��K
�ℎ��; 
{35} Gℎ
;2���"#�" 5 �,-#. � 

{36} /∗ 
� �ℎ����"#�" � ∞� �ℎ2� �ℎ2�2 
� �@ ��@X� 9
�ℎ ∗/ 

{37} ��"#�" � arg min��∈STUU��_`ab` �+����"#�" , �′� � ���′�/; 

{38} d@A2 �@ ��"#�" ; 
{39} ��
� ��
9ℎ �@� �ℎ
��2: 2:�2 �@��; 
{40} 1� 
�= 2:�2 �@�� �ℎ
��2: 

{41} �$ � �$ � ℎ��.#�" , ��"#�" �; 
{42} �.#�" � ��"#�" ; 
{43} e@� 
;; :
�2��2: 2:�2���, A�X
�ℎ �ℎ
��2: 2:�2 �@��� 

{44} �-.� � ���, A�; 
{45} '9:
�2 �ℎ2 2:�2 �@�� ���, A�; 
{46} 
� �-.� J ���, A 

{47} 
� +� 5 �,-#. / �ℎ���� � �
�+�ℎ����, ���, A� � ��A�/ ; 
{48} 2;�2 
� �ℎ���� � �-.� � ��A��  
{49} 
� +� 5 �,-#. / �ℎ���� � �
���∈STUU�T�+���, �′� � ���′�/ 

{50} '9:
�2L2��2M���; 
{51} D@�9��2�ℎ@��2��K
�ℎ��; 
 

 

 
Fig. 2 Example of shortest path computation. 

 
Fig. 3 Path planning algorithm flow-chart. 

IV.   FORMATION CONTROL AND FAULT-TOLERANCE 

STRATEGY 

A. Multi-robots Formation control method 

 This section describes the details of the formation strategy. 

Two distinct types of formation are considered. When the 

robots are in an obstacle-free domain, they implement a V-

shape formation and when obstacles are encountered, they favor 

a line formation to diminish the computation cost by allowing 

only the leader to computes the optimal path and also to 

increase the safety of the overall system. 

  The model presented here assumes that each robot is aware 

of its global position and is able to estimate the position of the 

surrounding robots using sensors.  

The robot’s formation is based on a trigonometric formulation.  

Let’s consider a virtual leader placed on the gravity center of 

the formation figure. The movement of the leader is a simple 

translation on the horizontal plane. In order to keep the initial 

formation, the followers need to calculate their positions 

according to the virtual leader. In a way such the initial 

formation is conserved.  

 The initial position of the robots determines the formation 

to keep during the navigation. Fig.4 presents the initial positions 

of three robots in the case of a triangle formation. 

The Euclidian coordinates of the virtual leader and the 

followers are respectively  f � !Mgh�0�, =gh�0�, Egh�0�&i and ej � !Mkj�0�, =kj�0�, Ekj�0�&i. 

 During the navigation, the robots should keep their initial 

formation. We assume that the robot’s positions along the 



vertical axis don’t change much, E � E
  . Therefore, we can 

ignore the variations along the vertical axis and only consider 

the horizontal plane. The formation parameters (4) are the 

Euclidian distance between each follower and the virtual leader :kj   and the angle between them lkj. 

⎩⎪⎨
⎪⎧:kj � q+Mgh�0� r Mkj�0�/ � +=gh�0� r =kj�0�/ 

lkj � �
�s� t=gh�0� r =kj�0�Mgh�0� r Mkj�0�u  (4) 

 By neglecting the error induced by water dynamics, the 

position of each follower is deducted from the virtual leader 

position (Fig.5). The coordinates of the follower Fi are given in 

(5), where v�� r 1� is the motion direction of the virtual leader 

between positions k-1 and k. 

 Depending on the values of lkj and :kj , the formation shape 

can be a triangle as well as a circle, or any other geometric 

shape.  

⎩⎪
⎨
⎪⎧Mkj��� � Mgh��� � :kj�@� �lkj � v�� r 1��=kj��� � =gh��� � :kj�
� �lkj � v�� r 1��Egh��� � Ekj���

v�� r 1� � �
�s� t=gh��� r =gh�� r 1�Mgh��� r Mgh�� r 1�u
 (5) 

 However, in the case where the robots have to switch to a 

line formation, a leader is necessary in order to compute the 

path planner algorithm. Therefore, the follower 1 becomes 

leader and each robot adjusts its rank( ejx� ← ej) in a way such 

the distance between two consecutive robots is equal to the 

distance a distance d to define. 

 Let’s consider two consecutive positions of a successor 

robot k-1 and k. The knowledge of two successive positions of 

the robots enables to determine the direction of its motion. 

Thus, each following robot will carry out its motion by only 

considering its predecessor’s direction of movement and the 

distance to be maintained. 

B.  Fault adaptability strategy 

 When the adopted formation is not a line, the system is 

naturally fault tolerant because the failure of a multi-robot’s 

system is generally caused by the fault occurring on the 

physical leader. In the case of the line formation, we considered 

the case where a leader robot has encountered a fault and is not 

able to move anymore to the goal, without necessarily being 

aware of its failure or being able to notify the followers.  

 At the beginning, the robot checks if its status is leader. if 

it is the case, it moves to the goal by computing the shortest 

path. A follower robot ascertains repeatedly the position of the 

leader and updates its own position accordingly. When the 

leader has not yet reached the goal and remains motionless for 

a period of time T, it is considered as encountering a fault. 

Therefore, follower1 becomes the leader and the other followers 

update their ranks as follows: ejx� ← ej. Fig.6 gives the steps 

of the fault-detection and adaptation strategy. 

 
Fig. 4 Initial position of the robots in a triangle formation.   

 
Fig. 5 Virtual Leader and followers’ positions during navigation in 

triangle formation. 

 
Fig. 6 Fault-tolerance algorithm flow-chart. 

V.  SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation setup 

 To Evaluate the effectiveness of the D* Lite search 

algorithm and the formation control, we conducted a simulation 

on Gazebo platform. gazebo9 release and Ros Melodic were 

installed on an Ubuntu 18.04 running computer. The 

characteristics of the computer are 3Ghz processor and 8GB 

RAM. The simulation is performed in 2 steps. First, a single 

robot is operated to test the robustness of the search algorithm 

and then a team of 3 robots is deployed to verify the feasibility 

of our navigation strategy. 

B.  Evaluation of the path planning algorithm 

One robot is launched on the simulation and some obstacles 

generated (Fig.7) during the navigation. Each time an obstacle 

is generated, the robot receives an estimate of the position and 

size of the obstacle. Fig.7b and Fig.7c show the robot’s 

navigation. 



 The robot is able to go through the obstacle zone and arrive 

safely to the goal as shown in Fig.7d, Fig.7e and Fig.7f. The 

results of the simulation demonstrate the optimality of the path 

generated by the algorithm. Also, by comparing the path 

followed by the robot and the one generated by the algorithm 

(Fig. 8), we can notice that the robot follows the generated path 

with enough smoothness. The offset between the two is slightly 

significant in some areas. However, it can be reduced with an 

improvement of the control algorithm in a way to reduce the 

influence of the water dynamics on the robot’s motion.    

D.  Environment adaptability strategy analysis 

In this part of the work, a team of 3 robots (Fig.9) is 

launched to evaluate the robustness of the strategy. We first 

assigned the status leader, follower1 and follower2 to the 

robots. At the beginning, the robots maintained a triangle 

formation of parameters  :k� � 0.5 ,  :k� � :k � √2 , and  lk� � 0, lk � 3~/4, lk� � 5~/4 . 
When the first obstacle is detected, the SURs switch to line 

formation, so the safety of the navigation is preserved. Only the 

leader computes the shortest path to the goal. The other robots 

adjust their positions according to the leader's position while 

maintaining a distance of 1 meter at least. 

Fig.11.b and Fig11.c show the robots switching from triangle to 

line formation and continuing the motion with the new 

formation. However, some problems are noticed in maintaining 

the formation. The first factor that explains this issue is the fact 

that each follower only considers the position of the robot in 

front of it and the second is the effect of the water dynamics on 

the motion of the robots.  

The fault-tolerance is evaluated by inducing a fault on the 

leader. The other robots are able to continue the navigation to 

the goal as shown in Fig.9.b and 10. 

Thus, the feasibility and the robustness and of the algorithm are 

demonstrated.     

  
                       (a)Initial position                        (b) New obstacles added  

  
 (c) Navigation between   obstacles                   (d) Path following 

  
(e)  Last obstacle avoided                  (f) Robot arriving at goal 

Fig. 7 Single robot navigating in complex environment.  

         
X coordinates (m) 

Fig. 8 Comparison of planned path and robot’s path on the horizontal 

plane. 
 

 
         (a)Initial position         (b) Robots switching to line formation 

 
(c) Path following                          (d) Faulty robot stopped 

Fig. 9 Multiple robot’s navigation in formation  

 
X coordinates (m) 

Fig. 10 Fault-tolerance navigation. 

E. Experimental results of the D* Lite algorithm 

 The experiment is carried out in a water tank of 1.5m large, 

2.5m long, and 0.5m depth. The robot is equipped with an IMU 

sensor that provides an estimate of its location and a Bluetooth 

communication is used to indicate to the robot the position of 

the obstacles. Considering the limitation of Bluetooth 

communication in an underwater environment, the robot 
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navigation is constrained to the surface of the water to keep the 

communication liaison. Initially, the robot (in the black 

triangle) was placed at x=6cm and y=2cm, and the goal (black 

circle) coordinates settled at x=2cm, and y= 23cm as shown in 

Fig.11. The tank is assimilated to an 8 connected-lattices of 

50cm distance from one edge to the nearest. Some obstacles 

(red circles) were added just at the beginning of the navigation 

and theirs positions and estimated sizes sent to the robot. The 

robot computes the shortest path then starts navigating to the 

goal (Fig.12.a). The obtained path allows the robot to avoid all 

obstacles (Fig.12.a and Fig.12.b) and arrive safely to the goal 

(Fig.12.c). The experiment proved the robustness of D* Lite 

algorithm in finding the shortest path in a non-deterministic 

underwater environment. 

 
Fig. 11 Experimental setup. 

  
      (a) After computing shortest path            (b)Avoiding obstacles 

  
            (c)Last obstacles reached                           (d)Arriving at goal 

Fig. 12 Robot computing and following the shortest path. 

VI.  CONCLUSION AND FUTURE WORK 

 This paper explores the problem of safe navigation in non-

deterministic underwater environment for multiple robot’s 

collaboration. A path planning strategy based on D* Lite search 

algorithm is examined to provide the optimal path to the goal. 

The safety of the algorithm is enhanced by considering the size 

of encountered obstacles as well as by maintaining a certain 

guard interval between the robot and the obstacles to avoid any 

collision. The collaborative navigation is achieved by designing 

an adaptative multi-robot’s formation shape. The robots adjust 

the formation between a V-shape and line shape accordingly to 

the environment. 

 The collaborative navigation is realized with suitable 

robustness in the simulation. The robots can smoothly change 

their formation to increase the safety of the system. However, 

the formation control strategy presents some shortages in terms 

of keeping the appropriate distance and angle between the 

robots. 

 The experiment conducted in the water tank validates the 

use of D* Lite algorithm in finding the optimal path when 

obstacles are present in the environment. Also, the algorithm 

presents promising performances regardless of the size of 

obstacles. The simulation’s results furthermore attest to the 

good accuracy of the planned path.  

  This work requires to be extended with further experiments 

to demonstrate the reliability of the formation control and the 

feasibility of the collaborative navigation. Also, a camera 

sensor should be considered for detecting the obstacles in order 

to solve the constraints induced by the Bluetooth 

communication. In the future, this research will be improved 

with real-word conditions of experiment to prove the 

effectiveness of the aforementioned strategies. 
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