
D* Lite-Based Navigation Algorithm for Multiple

Spherical Underwater Robots Collaboration
Awa Tendeng1, Shuxiang Guo2,3 Ruochen An1, and Chunying Li1

1Graduate School of Engineering
2Department of Intelligent Mechanical Systems Engineering

Faculty of Engineering, Kagawa University

3Key Laboratory of Convergence Medical Engineering

System and Healthcare Technology, The Ministry of Industry

and Information Technology, School of Life Science

2217-20, Hayashi-cho, Takamatsu, Kagawa, Japan Beijing Institute of Technology, Beijing 100081, China

s20g517@stu.kagawa-u.ac.jp guo@eng.kagawa-u.ac.jp

 Abstract – This research investigates the multiple robotic

systems navigation in an unknown environment problem. As an

attempt to solve this challenge, a navigation strategy based on D*

Lite search algorithm is proposed. To ensure an optimal path to

the goal, we implemented the D* Lite algorithm and improved the

safety of the algorithm by defining the non-reachable cells

accordingly to the size and position of the obstacles. The

collaborative navigation is ensured by a fault tolerance strategy

based on a low computation cost fault detection and leader

switching algorithm. The performed experiments in a water tank

and the simulation demonstrated that the search algorithm can

safely find the shortest path to the goal. The robustness of the path

planning algorithm is demonstrated further with relatively few

collisions occurrence. Also, the simulation shows that the robots

can safely adapt their formation from V-shape to line shape when

obstacles are present in the environment. However, the formation

navigation presents some inefficiencies in terms of accuracy. The

developed strategy will be extended in future works with more

experiments.

 Index Terms – D* Lite, spherical underwater robot,

collaborative navigation, fault tolerance, gazebo.

I. INTRODUCTION

 Current developments in the field of robotics have led to a

growing interest in the application of robots in underwater

operations. The intervention of a single AUV in marine

environment requires the equipment of that robot with several

sensors and other onboard electronics, making the overall

system very heavy. In addition, the robot has to stay compact in

an attempt to achieve greater flexibility and maneuverability.

These technical constraints suggest the use of a team of robots

in underwater missions.

A crucial issue to consider when deploying a fleet of robots

is the safety and reliability of navigation, especially in a

challenging environment. The marine environment presents a

particular complexity highlighted by the dynamics of the water

and the presence of a priori unknown different types of

obstacles. Several studies are conducted on how to move a robot

from a starting point to the target while considering these

constraints. The problem of optimal path finding in a dynamic

unknown or partially known environment is widely explored in

the literature [1]-[3]. With a large variety of solutions proposed

so far [4]-[9]. [1] proposes a classification of those methods in

two categories: Geometric Model Search Methods and Bionics

search methods. Geometric methods are widely used in path

planning problems and show strong performances and less

computation [2]. Among those methods, those based on

heuristic search like Djikstra, A*, D*(Dynamic A*) and D* Lite

have gained wide spread application in autonomous vehicle and

attract the interest of the research community [4][5]. D* Lite

algorithm is based on Djikstra but is more efficient for dynamic

search. Its suitability for underwater dynamic path search has

been demonstrated in [5] and [6]. [7] and [8] have proven the

efficiency of D* Lite for an AUV through 2D and 3D

simulations.

 In collaborative navigation, robots must be able to move

while being aware of the position of other robots and

maintaining a coordinated formation. Different coordinated

navigation approaches have been explored with great attention

[10]-[14]. [12] proposed a blockchain-based navigation

coordination algorithm for autonomous robots. This algorithm

has been implemented on the amphibious spherical underwater

robots (SUR) in terrestrial environment with satisfactory

performance and has solved the problem of mission tracking

when the group leader is out of service. The main drawback of

this algorithm is the computation cost and the need for reliable

communication. Indeed, the fault tolerance relies on the

possibility of electing a new leader by the non-faulty robots.

Considering the constraints related to communication in

underwater environment, the development of a navigation

strategy requiring a minimum of communication is necessary.

The effectiveness of the navigation depends also on the use of

an efficient algorithm to find the shortest path between the

starting point and the goal as well as to update the path as the

navigation progresses according to the presence of obstacles.

In this work, we implemented the D* Lite algorithm with

consideration of the position and size of the obstacles as well as

the preservation of a relative safety distance between the

obstacles and the robots. The overall effect is to adjust the

formation's shape of the robots according to the presence of

obstacles.

This work is organized as follow: Section II gives the

details of the spherical underwater robot’s structural design,

section III explains the navigation approach, section IV presents

the strategy to control the robots' formation and tolerance to

failure, section V is an exposition of the results obtained by

carrying out an experiment of the D* Lite algorithm and

simulating the navigation of a set of robots in Gazebo, and

section VI finally gives the conclusion of this work and some

future perspectives.

II. STRUCTURAL DESIGN OF THE SUR

 Several versions of the spherical underwater have been

designed in the past. In its current version, the main components

of the spherical robot are the hull composed of two

hemispheres, a cylindrical waterproof box, the servomotors and

the thrusters. Fig.1 shows the structural design of the robot. The

two hemispheres, made with acrylic material, are designed to

bear the pressure at a water depth of at least 8 m. Each of them

has a diameter of 40cm and 3mm thickness. Since the

hemispheres are not waterproof, the robot is equipped with a

waterproof box that contains electronic components such are

the different sensors, batteries, and onboard controllers. The

version used in this research is composed of 8 servomotors and

4 propellers to steer the robot in a 3D motion.

 (a)Front view

 (b) Side view (c) Top view

Fig. 1 Structure of the spherical underwater.

III. UNKNOWN ENVIRONMENT NAVIGATION

A. Goal-directed navigation approach

 Planning a trajectory is a key task for an underwater

vehicle’s navigation. When the optimal trajectory is planned in

a non-deterministic domain, only local navigation can be

considered. A perception of the environment is provided by the

robot sensors (camera, acoustic beam, etc.). This information is

processed to detect the presence of eventual obstacles and to

adjust the robot behavior accordingly. The selection of an

optimal and dynamic path planning technique thus becomes the

most important step in the navigation task. In the goal-directed

navigation, the position of the robot is first initialized on the

map and the goal settled. The robot computes the shortest path

to the goal from the starting points by considering the a priori

known obstacles as non-reachable cells, then follows that path.

During the navigation to the goal, the agent receives pose

estimation and environment information from its sensors, then

updates the map vertex by assigning a reachable or unreachable

label to cells and, and finally computes the shortest path from

its current position to the fixed goal. The shortest path depends

on the location of traversable cells as well as the cost of moving

from the robot’s position to an adjacent cell. From any cell

belonging to the computed path, its successor is, therefore, the

most optimal with minimum cost. Among the various

algorithms presented in the literature, the D* Lite [4][5] offers

many advantages in terms of finding the optimal solution and

minimizing computation cost, with optimal path finding when

implemented in underwater as well as terrestrial environment.

The D*Lite is an optimization of the D*(Dynamic A*) which is

based on LPA*(Longlife Planning A*), an incremental version

of A*. LPA* is very useful in graph search where vertices are

added or deleted over time

 D* efficiently recalculate the shortest path from the

robot’s current position by only computing the goal path that

has been modified. Which means that even if the environment

change, the algorithm will not recompute the path unless a

change occurs on the previously computed path.

In Fig.2 we have an example of D* Lite search. The initial path,

in blue, is recalculated when some obstacles are detected on the

path. The obtain path, in green isn’t recompute when the

changes that occur in the environment don’t concern the path.

B. D* Lite Implementation

 D* Lite repeatedly determines the shortest path from the

robot’s current position, sstart vertex to the goal vertex sgoal. The

environment is modeled as an eight fully-connected graph.

D* is based on incremental search. The expansion direction of

the search is given by the rhs(s) value (1). The rhs(s) is a

heuristic that corrects the cost value in case of local

inconsistency: when the cost of moving to edge s is different

from the path length to s. From the robot’s current position, the

algorithm calculates the cost of the 8 surrounding vertices. The

lowest cost will give the next point of the path.

To estimate the value of the grid’s edges, the algorithm uses

priority queue arrangement parameters. The priority vertex to

expend in the priority queue is determined by the key

k(s)=[k1(s); k2(s)].

 The key k is a value for comparison. The formula to

calculate it is given in (2) and (3).

�ℎ���� � � 0
� � � ��
���
���∈������� ������ � ���, ���� (1)

Where, S is the finite set of vertices of the graph, �������� ⊆� is the set of successors of the vertex � ∈ �, ���, ��� is the cost

of moving from edge s to edge s', g(s) is the total length from

start to edge s. ����� � �
������, �ℎ����� � ℎ���� (2)

� ��� � �
������, �ℎ����� (3)

Where h(s,goal) is the goal distance from the vertex s.

 The steps of the algorithm are summarized given in table

1. To increase the safety of the path, we added to the algorithm

a vertex update program that provides the required change to

the vertex when an obstacle is detected. Fig.1 summarizes the

working principle of the navigation strategy: the algorithm

computes the shortest path from the robot’s current position to

the goal. If some obstacles are detected, then the edges of the

graph are updated according to the size of obstacles and the

shortest path recomputes again.

TABLE I

D* Lite algorithm

Procedure CalculateKeys(s)

{01} Return !�
������, �ℎ����� � ℎ���"#�", �� � �$; �
������, �ℎ�����&
Procedure Initialize()

{02} ' � ∅;
{03} �$ � 0

{04} For all �)� �ℎ���� � ���� � ∞;
{05} �ℎ�+�,-#./ � 0;
{06} '. 1��2����,-#. , !ℎ���"#�" , �3�4�; 0&�;

Procedure UpdateVertex(u)

{07}
� �+��� 5 �ℎ���� 678 � ∈ '/ '. '9:
�2+�, �
;��;
�2<2=���/;
{08} 2;�2
� ����� 5 �ℎ���� 678 � ∉'� '. '9:
�2+�, �
;��;
�2<2=���/;
{09} 2;�2
� ����� � �ℎ���� 678 � ∈ '� '. ?2�@A2���;

Procedure UpdateEdgesCost(S)

{10} 1� @B��
�;2 �� C��2;

{11}D@�9��2 �@� 9
��
B;2 �2;;��
, �
E2_
�;

{12}'9:
�2 2:�2� �@��;

Procedure ComputeShortestPath()

{13} Gℎ
;2 �'. H@9<2=� � I D
;��;
�2<2=���"#�"�@� �ℎ����"#�"� J����"#�"��

{14} � � '. C@9��;

{15} �-.� � '. C@9<2=��;
{16} �3�4 � D
;��;
�2<2=���;
{17}
� ��-.� I �3�4�

{18} '. '9:
�2��, �3�4�;
{19} 2;�2
� ����� J �ℎ�����

{20} ���� � �ℎ����;
{21} '. ?2�@A2���;
{22} �@�
;; � K�2:���

{23}
� �� 5 �,-#. ��ℎ���� � �
�+�ℎ����, ���, �� � ����/;

{24} '9:
�2L2��2M���;
{25} N;�2

{26} �-.� � ����;

{27} ���� � ∞;

{28} �@�
;; � K�2:��� ∪ P�Q

{29}
���ℎ���� � ���, �� � �-.��

{30}
� +� 5 �,-#. /�ℎ���� � �
��R∈STUU���+���, ��� � �����/ ;
{31} '9:
�2L2��2M���;

Procedure Main ()

{32} �.#�" � ��"#�";
{33} 1�
�

;
E2��;
{34} D@�9��2�ℎ@��2��K
�ℎ��;
{35} Gℎ
;2���"#�" 5 �,-#. �

{36} /∗
� �ℎ����"#�" � ∞� �ℎ2� �ℎ2�2
� �@ ��@X� 9
�ℎ ∗/

{37} ��"#�" � arg min��∈STUU��_`ab` �+����"#�" , �′� � ���′�/;

{38} d@A2 �@ ��"#�" ;
{39} ��
� ��
9ℎ �@� �ℎ
��2: 2:�2 �@��;
{40} 1�
�= 2:�2 �@�� �ℎ
��2:

{41} �$ � �$ � ℎ��.#�" , ��"#�" �;
{42} �.#�" � ��"#�" ;
{43} e@�
;; :
�2��2: 2:�2���, A�X
�ℎ �ℎ
��2: 2:�2 �@���

{44} �-.� � ���, A�;
{45} '9:
�2 �ℎ2 2:�2 �@�� ���, A�;
{46}
� �-.� J ���, A

{47}
� +� 5 �,-#. / �ℎ���� � �
�+�ℎ����, ���, A� � ��A�/ ;
{48} 2;�2
� �ℎ���� � �-.� � ��A��
{49}
� +� 5 �,-#. / �ℎ���� � �
���∈STUU�T�+���, �′� � ���′�/

{50} '9:
�2L2��2M���;
{51} D@�9��2�ℎ@��2��K
�ℎ��;

Fig. 2 Example of shortest path computation.

Fig. 3 Path planning algorithm flow-chart.

IV. FORMATION CONTROL AND FAULT-TOLERANCE

STRATEGY

A. Multi-robots Formation control method

 This section describes the details of the formation strategy.

Two distinct types of formation are considered. When the

robots are in an obstacle-free domain, they implement a V-

shape formation and when obstacles are encountered, they favor

a line formation to diminish the computation cost by allowing

only the leader to computes the optimal path and also to

increase the safety of the overall system.

 The model presented here assumes that each robot is aware

of its global position and is able to estimate the position of the

surrounding robots using sensors.

The robot’s formation is based on a trigonometric formulation.

Let’s consider a virtual leader placed on the gravity center of

the formation figure. The movement of the leader is a simple

translation on the horizontal plane. In order to keep the initial

formation, the followers need to calculate their positions

according to the virtual leader. In a way such the initial

formation is conserved.

 The initial position of the robots determines the formation

to keep during the navigation. Fig.4 presents the initial positions

of three robots in the case of a triangle formation.

The Euclidian coordinates of the virtual leader and the

followers are respectively f � !Mgh�0�, =gh�0�, Egh�0�&i and ej � !Mkj�0�, =kj�0�, Ekj�0�&i.

 During the navigation, the robots should keep their initial

formation. We assume that the robot’s positions along the

vertical axis don’t change much, E � E
 . Therefore, we can

ignore the variations along the vertical axis and only consider

the horizontal plane. The formation parameters (4) are the

Euclidian distance between each follower and the virtual leader :kj and the angle between them lkj.

⎩⎪⎨
⎪⎧:kj � q+Mgh�0� r Mkj�0�/ � +=gh�0� r =kj�0�/

lkj � �
�s� t=gh�0� r =kj�0�Mgh�0� r Mkj�0�u (4)

 By neglecting the error induced by water dynamics, the

position of each follower is deducted from the virtual leader

position (Fig.5). The coordinates of the follower Fi are given in

(5), where v�� r 1� is the motion direction of the virtual leader

between positions k-1 and k.

 Depending on the values of lkj and :kj , the formation shape

can be a triangle as well as a circle, or any other geometric

shape.

⎩⎪
⎨
⎪⎧Mkj��� � Mgh��� � :kj�@� �lkj � v�� r 1��=kj��� � =gh��� � :kj�
� �lkj � v�� r 1��Egh��� � Ekj���

v�� r 1� � �
�s� t=gh��� r =gh�� r 1�Mgh��� r Mgh�� r 1�u
 (5)

 However, in the case where the robots have to switch to a

line formation, a leader is necessary in order to compute the

path planner algorithm. Therefore, the follower 1 becomes

leader and each robot adjusts its rank(ejx� ← ej) in a way such

the distance between two consecutive robots is equal to the

distance a distance d to define.

 Let’s consider two consecutive positions of a successor

robot k-1 and k. The knowledge of two successive positions of

the robots enables to determine the direction of its motion.

Thus, each following robot will carry out its motion by only

considering its predecessor’s direction of movement and the

distance to be maintained.

B. Fault adaptability strategy

 When the adopted formation is not a line, the system is

naturally fault tolerant because the failure of a multi-robot’s

system is generally caused by the fault occurring on the

physical leader. In the case of the line formation, we considered

the case where a leader robot has encountered a fault and is not

able to move anymore to the goal, without necessarily being

aware of its failure or being able to notify the followers.

 At the beginning, the robot checks if its status is leader. if

it is the case, it moves to the goal by computing the shortest

path. A follower robot ascertains repeatedly the position of the

leader and updates its own position accordingly. When the

leader has not yet reached the goal and remains motionless for

a period of time T, it is considered as encountering a fault.

Therefore, follower1 becomes the leader and the other followers

update their ranks as follows: ejx� ← ej. Fig.6 gives the steps

of the fault-detection and adaptation strategy.

Fig. 4 Initial position of the robots in a triangle formation.

Fig. 5 Virtual Leader and followers’ positions during navigation in

triangle formation.

Fig. 6 Fault-tolerance algorithm flow-chart.

V. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation setup

 To Evaluate the effectiveness of the D* Lite search

algorithm and the formation control, we conducted a simulation

on Gazebo platform. gazebo9 release and Ros Melodic were

installed on an Ubuntu 18.04 running computer. The

characteristics of the computer are 3Ghz processor and 8GB

RAM. The simulation is performed in 2 steps. First, a single

robot is operated to test the robustness of the search algorithm

and then a team of 3 robots is deployed to verify the feasibility

of our navigation strategy.

B. Evaluation of the path planning algorithm

One robot is launched on the simulation and some obstacles

generated (Fig.7) during the navigation. Each time an obstacle

is generated, the robot receives an estimate of the position and

size of the obstacle. Fig.7b and Fig.7c show the robot’s

navigation.

 The robot is able to go through the obstacle zone and arrive

safely to the goal as shown in Fig.7d, Fig.7e and Fig.7f. The

results of the simulation demonstrate the optimality of the path

generated by the algorithm. Also, by comparing the path

followed by the robot and the one generated by the algorithm

(Fig. 8), we can notice that the robot follows the generated path

with enough smoothness. The offset between the two is slightly

significant in some areas. However, it can be reduced with an

improvement of the control algorithm in a way to reduce the

influence of the water dynamics on the robot’s motion.

D. Environment adaptability strategy analysis

In this part of the work, a team of 3 robots (Fig.9) is

launched to evaluate the robustness of the strategy. We first

assigned the status leader, follower1 and follower2 to the

robots. At the beginning, the robots maintained a triangle

formation of parameters :k� � 0.5 , :k� � :k � √2 , and lk� � 0, lk � 3~/4, lk� � 5~/4 .
When the first obstacle is detected, the SURs switch to line

formation, so the safety of the navigation is preserved. Only the

leader computes the shortest path to the goal. The other robots

adjust their positions according to the leader's position while

maintaining a distance of 1 meter at least.

Fig.11.b and Fig11.c show the robots switching from triangle to

line formation and continuing the motion with the new

formation. However, some problems are noticed in maintaining

the formation. The first factor that explains this issue is the fact

that each follower only considers the position of the robot in

front of it and the second is the effect of the water dynamics on

the motion of the robots.

The fault-tolerance is evaluated by inducing a fault on the

leader. The other robots are able to continue the navigation to

the goal as shown in Fig.9.b and 10.

Thus, the feasibility and the robustness and of the algorithm are

demonstrated.

 (a)Initial position (b) New obstacles added

 (c) Navigation between obstacles (d) Path following

(e) Last obstacle avoided (f) Robot arriving at goal

Fig. 7 Single robot navigating in complex environment.

X coordinates (m)

Fig. 8 Comparison of planned path and robot’s path on the horizontal

plane.

 (a)Initial position (b) Robots switching to line formation

(c) Path following (d) Faulty robot stopped

Fig. 9 Multiple robot’s navigation in formation

X coordinates (m)

Fig. 10 Fault-tolerance navigation.

E. Experimental results of the D* Lite algorithm

 The experiment is carried out in a water tank of 1.5m large,

2.5m long, and 0.5m depth. The robot is equipped with an IMU

sensor that provides an estimate of its location and a Bluetooth

communication is used to indicate to the robot the position of

the obstacles. Considering the limitation of Bluetooth

communication in an underwater environment, the robot

Y
 C

o
o

rd
in

at
es

 (
m

)
Y

 C
o
o

rd
in

at
es

 (
m

)

navigation is constrained to the surface of the water to keep the

communication liaison. Initially, the robot (in the black

triangle) was placed at x=6cm and y=2cm, and the goal (black

circle) coordinates settled at x=2cm, and y= 23cm as shown in

Fig.11. The tank is assimilated to an 8 connected-lattices of

50cm distance from one edge to the nearest. Some obstacles

(red circles) were added just at the beginning of the navigation

and theirs positions and estimated sizes sent to the robot. The

robot computes the shortest path then starts navigating to the

goal (Fig.12.a). The obtained path allows the robot to avoid all

obstacles (Fig.12.a and Fig.12.b) and arrive safely to the goal

(Fig.12.c). The experiment proved the robustness of D* Lite

algorithm in finding the shortest path in a non-deterministic

underwater environment.

Fig. 11 Experimental setup.

 (a) After computing shortest path (b)Avoiding obstacles

 (c)Last obstacles reached (d)Arriving at goal

Fig. 12 Robot computing and following the shortest path.

VI. CONCLUSION AND FUTURE WORK

 This paper explores the problem of safe navigation in non-

deterministic underwater environment for multiple robot’s

collaboration. A path planning strategy based on D* Lite search

algorithm is examined to provide the optimal path to the goal.

The safety of the algorithm is enhanced by considering the size

of encountered obstacles as well as by maintaining a certain

guard interval between the robot and the obstacles to avoid any

collision. The collaborative navigation is achieved by designing

an adaptative multi-robot’s formation shape. The robots adjust

the formation between a V-shape and line shape accordingly to

the environment.

 The collaborative navigation is realized with suitable

robustness in the simulation. The robots can smoothly change

their formation to increase the safety of the system. However,

the formation control strategy presents some shortages in terms

of keeping the appropriate distance and angle between the

robots.

 The experiment conducted in the water tank validates the

use of D* Lite algorithm in finding the optimal path when

obstacles are present in the environment. Also, the algorithm

presents promising performances regardless of the size of

obstacles. The simulation’s results furthermore attest to the

good accuracy of the planned path.

 This work requires to be extended with further experiments

to demonstrate the reliability of the formation control and the

feasibility of the collaborative navigation. Also, a camera

sensor should be considered for detecting the obstacles in order

to solve the constraints induced by the Bluetooth

communication. In the future, this research will be improved

with real-word conditions of experiment to prove the

effectiveness of the aforementioned strategies.

REFERENCES

[1] Y. Guo, H. Liu, X. Fan, and W. Lyu, “Research Progress of Path Planning
Methods for Autonomous Underwater Vehicle”, Mathematical Problems

in Engineering, vol. 2021, Article ID 8847863, 2021.

[2] V. Yordanova and B. Gips, “Coverage Path Planning with Track Spacing
Adaptation for Autonomous Underwater Vehicles”, in IEEE Robotics and

Automation Letters, vol. 5, no. 3, pp. 4774-4780, July 2020.

[3] B.K. Patle, B. L Ganesh, A. Pandey, D.R.K. Parhi, and A. Jagadeesh, “A
review: On path planning strategies for navigation of mobile robot”, in

Defence Technology, vol. 15, issue 4, pp 582-606, 2019.

[4] S. Koenig and M. Likhachev, ‘‘Fast replanning for navigation in unknown
terrain,’’ IEEE Trans. Robot., vol. 21, no. 3, pp. 354–363, 2005.

[5] S. Koenig, C. Tovey, and Y. Smirnov, “Performance bounds for planning

in unknown terrain”, Artificial Intelligence, vol. 147, Issue 1–2, pp 253-
279, 2003.

[6] A. T. Le, M. Q. Bui, T. D. Le, and N. Peter, “D* lite with reset: Improved

version of D* lite for complex environment”, in Proceeding of the 2017
IEEE International Conference on Robotic Computation (IRC), pp. 160–

163, 2017.
[7] K. Xie, J. Qiang and H. Yang, “Research and Optimization of D-Start Lite

Algorithm in Track Planning”, IEEE Access, vol. 8, pp. 161920-161928,

2020.
[8] B. Sun and D. Zhu, “Three-dimensional D* lite path planning for

autonomous underwater vehicle under partly unknown environment”, in

Proceeding of the 2016 IEEE world congress on Intelligent Control and
Automation., pp. 3248–3252.

[9] J. Guo, C. Li, and S. Guo, “Path Optimization Method for the Spherical

Underwater Robot in Unknown Environment”, J Bionic Eng. 17, pp 944–
958, 2020.

[10] L. Shi, K. Tang, S. Guo, X. Bao, S. Pan and P. Guo, “Leader-follower

cooperative movement method for multiple amphibious spherical robots”,
in proceeding of 2016 IEEE International Conference on Mechatronics

and Automation, pp. 593-598, 2016.

[11] L. Zheng, S. Guo, Y. Piao, S. Gu, and R. An, “Collaboration and Task
Planning of Turtle-Inspired Multiple Amphibious Spherical Robots”,

Micromachines, vol. 11, no. 71, 2020.

[12] S. Guo, S. Cao and J. Guo, “Study on Collaborative Algorithm for a
Spherical Multi-robot System based on Micro-blockchain”, in Proceeding

of 2019 IEEE International Conference on Mechatronics and Automation,

pp. 1465-1470, 2019.
[13] X. Hou, S. Guo, L. Shi, H. Xing, et al, “Improved Model Predictive-Based

Underwater Trajectory Tracking Control for the Biomimetic Spherical

Robot under Constraints”, Applied Science, vol.10, no.22,2020.
[14] J. Guo, C. Li and S. Guo, “Study on the Autonomous Multirobot

Collaborative Control System Based on Spherical Amphibious Robots”,

IEEE Systems Journal, 2020.

	Search
	Print

