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 Abstract – Vascular interventional surgery is 

prevalent in treating cardiovascular and 

cerebrovascular diseases because of its low-invasive and 

rapid recovery. Surgeons cannot observe the vascular 

contour in real-time during the operation. So it is a 

technical task. In this paper, we try to research the 

problem by using the object detection and recognition 

model. We divide the guidewire moving in the 2D image 

into two states: resistance deformation and non-

resistance deformation. Then we use the Faster-RCNN to 

classify and track the guidewires in phantom and 

synthetic surgical videos. The operation datasets in the 

phantom come from the PCI trainer. After extracting the 

mask of the guidewire as the ground truth, we randomly 

add the factual X-ray image information of the patient in 

the background. Finally, we compare the recognition 

results of the two cases. The model converges on the 

validation datasets, which proves that our method is 

effective. In vascular interventional surgery, the AI 

model can learn the expert experience, which may render 

an idea for the development of surgical robots. 
 

 Index Terms – Vascular interventional surgery, Faster 

RCNN, Resistance movement. 
  

I.  INTRODUCTION 

Because of low-invasive and rapid recovery advantages, 

vascular interventional surgery is prevalent in treating 

cardiovascular and cerebrovascular diseases. During the 

operation, the surgeon used X-ray equipment to observe the 

procedure. The long-term process will cause irreversible 

damage to the surgeon's body. The vascular interventional 

robot can avoid the surgeon's radiation exposure through the 

master-slave control mode [1],[2]. After several years of 

development, robot structure has gradually become an 

important research field [3]-[5]. In addition to specific 

control modules, environment perception modules can also 

help surgeons find the risks in time. For instance, they use 

robots to control the catheters or guidewires with low 

resistance through force feedback [6]-[8]. Some researchers 

use ultrasound equipment to supplement the depth 

information and help doctors to locate the equipment 

accurately. The essence of these methods is to assist 

surgeons in operating catheters or guidewires to the target 

position smoothly. The operation skill given by robots to 

surgeons is a critical direction [9]-[12]. 

In recent years, the rapid development of deep learning 

has greatly enhanced the visual perception of robots. For 

example, the image segmentation based on U-net [13] can 

learn the surgeon's annotation and automatically segment 

computed tomography (CT) lung lesions. The YOLOv3 [14] 

algorithm can identify the end of the guidewire in real-time, 

which is helpful to improve the visual perception of surgical 

robots. In the general vascular intervention procedure, the 

master-slave robot can keep the operator away from the 

operating table. However, the assistants must stay in the 

operating room to monitor the robot operation to avoid risk. 

Some researchers proposed identifying force fluctuation 

through the CNN model, judging the current operation risk, 

and guiding doctors to operate [15]. When the force exceeds 

the warning line, the risk is already occurring. In more cases, 

surgeons can judge the risk by observing the low-resolution 

x-ray video, and the main feature that affects the surgeons' 

judgment is the shape of guidewires or catheters. Most of the 

time, the vascular contour is invisible. Experienced surgeons 

will judge the current operational risk according to the 

characteristics of angiographic and shapes. Some 

researchers try to help surgeons improve operation skills 

through virtual reality system [16]. Some researchers have 

tried to segment the moving guidewire in vascular. The 

results show that bone or residual contrast agents will affect 

the segmentation accuracy [17]. 

 

Fig. 1. The resistance motion recognition framework 



 

Fig. 2. PCI training platform for vascular interventional 

surgery 

In this paper, we summarized the following deficiencies 

exist in the visual perception of the vascular interventional 

surgery robot: 

1） The robot cannot accurately identify the guidewire or 

catheter, that is hard to judge the operation risk 

according to the x-ray image. 

2） It is challenging to extract expert experience in surgery. 

Moreover, the surgical risk is not easy to define, and it 

is hard to establish adequate datasets. 

II.  SYSTEM COMPOSITION 

For problem A, this paper attempts to establish a 

guidewire identification and risk assessment model in non-

vascular visual states using Faster-RCNN. This deep 

learning model can track the guidewire motion in real-time. 

To solve problem B, we try to collect datasets in the PCI 

trainer model in vitro, fill in the factual image through image 

processing algorithms, and construct guidewire tracking and 

risk identification datasets. The overall frame is shown in 

Fig. 1. 

With the PCI trainer model in vitro, we can judge the 

operation risk more accurately. Because the PCI vascular 

model is 2D, the camera can capture RGB images like X-

ray. If we collect 3D images with RGB images, the refraction 

of water flow will cause guidewire distortion. After 

collecting the PCI trainer operation, we can mark the 

abnormal bending and collision of the guidewire tip. This 

process is regarded as a gold standard when the vascular is 

visible.  The phantom datasets are manually labelled as risk 

or non-risk. The way is to find the resistance deformation on 

the moving guidewire tip. We train a faster-RCNN algorithm 

to track such risks. In order to build a non-vascular 

environment, we find the open-source chest X-ray datasets. 

We extract masks from the guidewire and randomly placed 

them in any position of X-ray to build a counterfeit dataset. 

In the last part, we discuss the verification results of the 

model and give the conclusion. 

III.  EXPERIMENTAL METHODS 

A. PCI data acquisition in vitro. 

 

Fig. 3. Guidewire motion state extraction. 

We use a vascular phantom (PCI Trainer for Experts, 

Medialpha Co., Ltd.) to collect guidewire operation videos. 

PCI trainer is a 2D training model for interventional 

surgeons, which contains many PCI operations. For 

example, stent, chronic total occlusion (CTO), etc. We used 

a standard guidewire (J-shape) to simulate PCI operation in 

the model. As shown in Fig. 2, the platform includes a 

camera, PCI trainer, guidewire, and operation interface. The 

size of the collected image is 640 × 480. We get the image 

only containing the guidewire mask by image subtraction, 

which superimposes the factual image background. In PCI 

trainers, the coarsest vascular is the aortic arch, about 

10𝑚𝑚. The thinnest vascular is 1𝑚𝑚. We almost insert 

guidewires into all positions of the PCI trainer to collect 

images of the guidewire deformation. Finally, we collected 

a total of 25𝑚𝑖𝑛  videos, 20𝐻𝑧 , 30000 images as 

metadata. We segment the moving guidewire, as shown in 

Fig. 3. Firstly, we use the empty PCI model for image 

subtraction, add a gaussian smoothing filter to filter the 

noise, and get a clearer guidewire deformation mask. 

B. Marking the resistance of moving guidewire. 

In the process of intervention, the most critical 

requirement is the resistance-free movement of the 

guidewire. It is the primary skill for surgeons to avoid 

danger. However, in the actual operation process, due to the 

material of the guidewire, the patient's vascular specificity, 

heart beating, and other factors, the contact force of the 

guidewire tip cannot be transmitted to the surgeon in real-

time. Sometimes, the slight resistance deformation of the 

guidewire cannot be detected, which is easy to cause 

vascular rupture, thrombosis, and even increase the risk. 

Here we describe this situation through a schematic diagram, 

as shown in Figure 4. 

 



 

Fig 4. Resistance deformation diagram of guidewire. 

 

As shown in Fig. 4, the guidewire is not easy to form a 

forward state with resistance, as shown in (a). Because of 

the remote intervention, the doctor's hand cannot sense the 

change of tip force. From the clinical experience, surgeons 

need to keep (b) state when operating guidewire to avoid 

the occurrence of a risk. 

Therefore, the guidewire mask in the PCI trainer is 

labeled as resistance deformation and non-deformation 

frame by frame through manual annotation. Before labeling, 

we calculate the Hamming distance between images to 

determine whether the guidewire is moving. Before 

calculating the Hamming distance, we first calculate the 

hash value of the image. With judge the distance between 

the hash value of two frames, we can determine whether the 

guidewire is moving at this moment.  

After determining the guidewire in motion, we cut the 

rectangular box of 200 × 300  pixels around the moving 

guidewires as the first step to filter the mask datasets. We can 

further judge whether the guidewire is moving by the position 

change of the corners. The corner represents a pixel in the 

image. A small change in any direction will bring a significant 

change in the corner. The Shi-Tomasi corner analyzes the 

eigenvalue of the autocorrelation matrix 𝑀. If the smaller of 

the two eigenvalues are more significant than the minimum 

threshold, this pixel will be obtained as a strong corner. The 

Shi-Tomasi algorithm used in this paper is described as 

𝐸(𝑢, 𝑣) ≈ [𝑢, 𝑣]𝑀 (
𝑢

𝑣
)                                     

 

𝑀 = ∑ 𝑤(𝑥, 𝑦) [
𝐼𝑥

2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ] → 𝑅−1 [

𝜆1 0
0 𝜆2

] 𝑅         
(𝑥,𝑦)

 

 

𝑆𝑇𝑅 = 𝑚𝑖𝑛(𝜆1, 𝜆2)                                    (1) 

Where 𝐸  represents the change of gray value when the 

window moves in all directions, 𝐼𝑥  and 𝐼𝑦  are the 

gradients in 𝑋 and 𝑌 directions, and 𝑢 and 𝑣 represent 

the displacement of the moving window. 𝑅 represents the 

rotation factor. It does not affect the variation component. 

Shi-Tomasi algorithm determines whether the current point 

is a corner by judging the minimum eigenvalue of matrix 𝑀. 

In this way, we get the bounding boxes of guidewires 

and the categories of resistance states. Finally, we get 2792 

mask images with labels from the 25𝑚𝑖𝑛 operation video. 

The image with wrong mask segmentation is eliminated. The 

masked guidewire statistics are shown in Table I. 

Table I 

The masked guidewire datasets statistics 

State Static 

Moving 

Others 
Resistance 

Non-

resistance 

Frames 1676 596 519 207 

Percentage 55.88% 19.89% 17.30% 6.92% 

 

Table II 

The training datasets statistics 

Type 

Training Testing 

Resista

-nce 

Non-

resistance 

Resista

-nce 

Non-

resistance 

Number 22760 20760 5690 5190 

Rotation (0°, 90°, 180°, 270°) (0°) 

Chest X-

ray 
40 10 

 

C. Training datasets preprocessing 

The actual X-ray background is very complex. In order 

to simulate the natural operation environment, we choose the 

NIH ChestX-ray14 [18] as the background of the guidewire 

mask. As shown in Fig. 5, ChestX-ray14 mainly comes from 

patients with 14 kinds of lung diseases. It haves 112120 front 

views of 30805 patients. Here we only select 50 healthy 

samples as the background. The guidewire with bounding 

box moves at any position of X-ray. We randomly place the 

guidewire mask in the red dotted line, covering the joint 

positions in PCI operation, as shown in Fig. 5(c). At the same 

time, we also rotate the training images randomly, so the 

dataset is expanded four times. Here, the image resolution 



from the ChestX-ray14 is 1024 × 1024 . Two images' 

pixels are covered one by one. Then we divide the pseudo-

X-ray image into 500 × 500 randomly. The principle of 

segmentation is that each image must contain the outline of 

a guidewire. We also separate the data in the form of 8: 2 

for model training and testing. There is only one guidewire 

mask in each X-ray. In model validation, we always choose 

the most interesting bounding box as the classification 

target. The final statistics of training data are shown in Table 

II. 

D. Fast RCNN model training 

Considering that the actual X-ray image is of high 

resolution, this paper selects fast RCNN as the training 

model of guidewire tracking and resistance detection. Fast 

RCNN consists of four parts. 

1） Convolution layers. As a CNN network target detection 

method, Faster RCNN extracts feature maps of an image 

through the convolution layer.  

2） Region proposal networks (RPN). RPN generates region 

proposals. In this layer, we use Softmax to judge 

whether the anchors are positive or negative, and then 

we use the bounding box region to modify the anchors 

to obtain accurate propositions. 

3） ROI pooling. This step integrates the input feature maps 

and region proposals of the previous layer, extracts the 

proposal feature maps after synthesizing this 

information, and sends them to the subsequent 

connection layer to determine the target category. 

4） Fully connected layer. The category of proposals is 

calculated by proposal feature maps, and the final 

accurate position of the detection box is obtained by 

bounding box region again. 

 

Different from the fast RCNN used in this paper, our 

final FCN is used for binary classification. The classification 

loss use cross-entropy, and the bounding box regression use 

smooth-l. SDG optimizes the model. The loss of both is 

shown in the following: 

Lcls(pi, pi
∗) = − ∑ pi

∗log(pi)

i

                             (3) 

 

𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑡𝑖 − 𝑡𝑖

∗)

𝑖∈𝑥,𝑦,𝑤,ℎ

 

 

smoothL1(x) = {
0.5x2         if|x| < 1

|x| − 0.5     otherwise
                    (4) 

Where 𝑖 represents the anchors index. 𝑝𝑖 represents the 

positive Softmax probability. 𝑝𝑖
∗  represents the ground 

truth predict probability. 𝑡𝑖  represents the predict 

bounding box and 𝑡𝑖
∗  represents the ground truth box. 

Other hyperparameters used in the model are shown in 

Table III. 

 

Fig 5. Operation image compose. 

 

Fig. 6. Guidewire tracking and resistance identification based on Faster RCNN



IV.  RESULTS AND DISCUSSION 

Tabel III 

The training hyper-parameters 

Hyper-parameters Value 

epochs 20 

batch size 1 

learning rate 0.001 

learning decay 1e-5 

decay gamma 0.1 

 

 

 

(a). The binary classification losses 

 

(b). The binary classification accuracies 

Fig. 7. The training results of Faster RCNN 

Faster RCNN usually use the pre-trained CNN model. 

Here we choose Resnet-18 in C2L as the pre-training feature 

model [19] in this paper. C2l is a pre-training method based 

on an extensive range of 2D radiographs only. We use 

Anaconda 3, Python 3.8, Pytorch 1.7.1, Cuda 11.1 and 

Cudann 9.1 as the training environment. Firstly, we train the 

RPN network, in which the classification IoU of anchors is 

between 0.3 and 0.7, then we collect proposals through the 

trained RPN network. Finally, we train the whole Faster 

RCNN. The loss function of the whole network is as follows: 

              𝐿(𝑝𝑖 , 𝑡𝑖) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗)

𝑖

+ λ
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)                     (5)

𝑖

 

Where λ is used to balance two training losses. We choose 

0.5 in this paper. 

We calculate the training results of the fast RCNN 

model based on C2L pre-training in 20 epochs. Each epoch 

represents a complete cycle, and we record 10 iterations for 

each epoch. The results of model training and validation are 

shown in Fig. 7. From Fig. 7, we can see that the model 

converges at the 50th iteration, but the test accuracy and loss 

continue to fluctuate. It may be related to the imbalance of 

data distribution between the training sets and testing sets. If 

we increase the diversity of phantom and guidewire masks, 

the problem can be solved. After 50 iterations, the average 

testing accuracy of Faster RCNN model is 86.54%. Other 

results are shown in Table IV. 

Table IV 

The model testing results 

Results Recall Precision F1 

Non-

resistance 
0.9672 0.8027 0.8773 

Resistance 0.7648 0.9593 0.8511 

 

The results show that the sample recall value of non-

resistance motion is 96.72%, and the precision of resistance 

motion is 95.93%, which proves that the model can better 

distinguish the non-resistance motion of guidewire. 

However, the precision value of non-resistance motion is 

80.27%, and the recall value of resistance motion is 76.48%, 

which indicates that the model is easy to misjudge the 

resistance samples as non-resistance samples. It may be due 

to the error of annotation. In the video, the deformation of 

the guidewire in the non-resistance motion may be small, 

which makes the model misjudge. 

 



V.  CONCLUSION 

In this paper, we try to build a vision-based guidewire 

video algorithm model in a non-vascular environment. We 

use the phantom platform to collect guidewire motions and 

use the Shi-Tomasi algorithm and Hamming distance to 

filter the duplicate images. Then, through manual labeling, 

we divide the moving guidewire into resistance state and 

non-resistance state and obtain the guidewire mask. Next, 

we access the public dataset s ChestX-ray14 to obtain the 

actual patient's X-ray chest images as the background 

information, and we also add the guidewire to the X-ray 

according to a certain proportion to get the bounding box. 

We get the Resnet18 pre-training model based on extensive 

X-ray datasets from C2L as the feature network of Faster 

RCNN. Finally, we train the whole network, and the training 

results show that the resistance recognition model can give 

a good precision, which is 95.93%, but recall is only 76.48%. 

We analyze that the resistance deformation of the guidewire 

is too small to make the model misjudge. Finally, our method 

provides a good idea for combining expert experience and 

AI algorithm in vascular interventional surgery. Unlike force 

feedback [20], it has reference value for the related research 

of expanding the visual perception function of vascular 

interventional surgery robots. 

ACKNOWLEDGMENT 

This work was supported in part by the National Natural 

Science Foundation of China (61703305), in part by 

National High-tech Research and Development Program 

(863 Program) of China (2015AA043202), in part by SPS 

KAKENHI (15K2120) in part by Key Research Program of 

the Natural Science Foundation of Tianjin 

(18JCZDJC38500), and in part by Innovative Cooperation 

Project of Tianjin Scientific and Technological Support 

(18PTZWHZ00090). 

REFERENCES 

[1]. X. Bao et al., “Operation evaluation in-human of a novel Remote-

controlled vascular interventional robot,” Biomedical 

Microdevices, vol.20, no.2, 2018, doi:10.1007/s10544-018-0277-

5. 

[2]. X. Bao et al., “Compensatory force measurement and multimodal 

force feedback for remote-controlled vascular interventional 

robot,” Biomedical Microdevices, vol.20, no.3, 2018, 

doi:10.1007/s10544-018-0318-0. 

[3]. L. Zhang et al., “A Magnetorheological Fluids-based Robot-

assisted Catheter/guidewire Surgery System for Endovascular 

Catheterization,” Micromachines, vol.12, no.6, 2021, 

doi:10.3390/mi12060640. 

[4]. L. Zheng, S. Guo, “A Magnetorheological Fluid-based Tremor 

Reduction Method for Robot Assisted Catheter Operating 

System,” International Journal of Mechatronics and Automation, 

vol.8, no.2, pp.72-79, 2021, doi:10.1504/IJMA.2021.115234. 

[5]. X. Bao et al., “Operation evaluation in-human of a novel Remote-

controlled vascular interventional robot,” Biomedical 

Microdevices, vol.20, no.2, 2018, doi:10.1007/s10544-018-0277-

5. 

[6]. J. Guo, X. Jin, S. Guo and Q. Fu, “A Vascular Interventional 

Surgical Robotic System Based on Force-Visual Feedback,” 

IEEE Sensors Journal, vol. 19, no. 23, pp. 11081-11089, 1 Dec.1, 

2019, doi:10.1109/JSEN.2019.2935002. 

[7]. X. Jin et al., “Development of a Tactile Sensing Robot-Assisted 

System for Vascular Interventional Surgery,” IEEE Sensors 

Journal, vol. 21, no. 10, pp. 12284-12294, 15 May15, 2021, 

doi:10.1109/JSEN.2021.3066424. 

[8]. S. Guo et al., “A Novel Robot-Assisted Endovascular 

Catheterization System with Haptic Force Feedback,” IEEE 

Transactions on Robotics, vol.35, no.3, pp.685-696, 2019, 

doi:10.1109/TRO.2019.2896763. 

[9]. S. Guo et al., “Machine learning-based Operation Skills 

Assessment with Vascular Difficulty Index for Vascular 

Intervention Surgery,” Medical & Biological Engineering & 

Computing, vol.58, no.8, pp.1707-1721, 2020, 

doi:10.1007/s11517-020-02195-9. 

[10]. Y. Zhao et al., “A novel noncontact detection method of surgeon’s 

operation for a master-slave endovascular surgery robot,” 

Medical & Biological Engineering & Computing, vol.58, no.4, 

pp.871-885, 2020, doi:10.1007/s11517-020-02143-7. 

[11]. S. Guo et al., “A Surgeon’s Operating Skills-based Non-

interference Operation Detection Method for Novel Vascular 

Interventional Surgery Robot Systems,” IEEE Sensors Journal, 

vol.20, no.7, pp.3879-3891, 2019, 

doi:10.1109/JSEN.2019.2960926. 

[12]. C. Yang et al., “A Vascular Interventional Surgical Robot Based 

on Surgeon's Operating Skills,” Medical & Biological 

Engineering & Computing, vol.57, no.9, pp.1999-2010, 2019, 

doi:10.1007/s11517-019-02016-8. 

[13]. Gaál G, Maga B, Lukács A, “Attention u-net based adversarial 

architectures for chest x-ray lung segmentation,” arXiv preprint, 

2020, arXiv:2003.10304. 

[14]. R. -Q. Li et al., "Real-Time Multi-Guidewire Endpoint 

Localization in Fluoroscopy Images," IEEE Transactions on 

Medical Imaging, doi:10.1109/TMI.2021.3069998. 

[15]. Y. Zhao et al., “A CNN-based prototype method of unstructured 

surgical state perception and navigation for an endovascular 

surgery robot,” Med Biol Eng Comput, vol. 57, pp. 1875–1887, 

2019, doi:10.1007/s11517-019-02002-0. 

[16]. S. Guo, X. Cai, B. Gao, “A Tensor-Mass Method-based Vascular 

Model and its Performance Evaluation for Interventional Surgery 

Virtual Reality Simulator,” The International Journal of Medical 

Robotics and Computer Assisted Surgery, vol.14, no.6, 2018, 

doi:10.1002/rcs.1946. 

[17]. Nguyen, Anh, et al., “End-to-End Real-time Catheter 

Segmentation with Optical Flow-Guided Warping during 

Endovascular Intervention." 2020 IEEE International Conference 

on Robotics and Automation (ICRA), 2020, pp. 9967-9973, doi: 

10.1109/ICRA40945.2020.9197307. 

[18]. P. Rajpurkar et al., “Chexnet: Radiologist-level pneumonia 

detection on chest x-rays with deep learning,” arXiv preprint, 

2017, arXiv:1711.05225. 

[19]. HY. Zhou et al, “Comparing to Learn: Surpassing ImageNet 

Pretraining on Radiographs by Comparing Image 

Representations,” Medical Image Computing and Computer 

Assisted Intervention – MICCAI 2020. Lecture Notes in 

Computer Science, vol. 12261, 2020, doi:10.1007/978-3-030-

59710-8_39. 

[20]. Y. Song, “Performance evaluation of a robot-assisted catheter 

operating system with haptic feedback,” Biomedical 

Microdevices, vol.20, no.2, 2018, doi:10.1007/s10544-018-0294-

4. 
 


	Search
	Print

