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 Abstract – With the increasing use of vascular interventions, 

catheter navigation in complex vessels has become even more 

critical. Vascular intervention surgeries also require more precise 

manipulation and a more intelligent system to ensure the safety of 

the patients. In this paper, a virtual training model based on deep 

reinforcement learning was designed to navigate the catheter into 

the aortic arch. The whole experiment was carried out in a virtual 

environment, and a reinforcement learning method was used to 

test the performance of catheter autonomous navigation in vessels. 

Finally, the model was successfully trained and results were 

analyzed basing on previous work. The results obtained would be 

more convincing if the model was more complex and closer to the 

actual vessels. 
 
 Index Terms -Vascular interventional surgery, Reinforcement 

learning, Catheter navigation. 

 

I.  INTRODUCTION 

With the rapid increase in cardiovascular morbidity, 

minimally invasive vascular interventions have rapidly 

replaced traditional open or cranial surgery due to their patient-

friendly nature [1]. For many years, medical robots have been 

used in surgery and healthcare, and the use of robots in surgery 

has been beneficial for departments such as head and neck, 

cardiac and urology Robotics in cardiac surgery [2]. 

The ultimate goal of vascular intervention is to perform the 

procedure without compromising the integrity of the chest. 

Catheter access to the heart can be less traumatic for the patient 

[3]. However, it significantly increases the complexity of the 

surgical approach, requiring more sophisticated instruments, 

greater precision, dexterity and intuitive remote manipulation. 

It also has its disadvantages: interventional procedures are 

highly dependent on the surgeon's surgical experience, and the 

cost of training qualified surgeons is high [4]. 

Existing master-slave interventional robots are passive 

recipients of the surgeon's actions. In the more mature CorPath 

GRX system, autonomy is also limited to compensation for the 

angle of rotation of the guidewire and does not tap into 

multidimensional information [5]. There is, therefore, a need to 

combine simulation technology and in vitro physical vascular 

models to build a more intelligent robotic system for vascular 

interventions. 

In recent years, automation technologies based on deep 

learning and reinforcement learning have been rapidly shaped 

and implemented, showing a high scientific value. In the field 

of surgical robots, the automated and intelligent operation of 

surgical instruments based on ensuring surgical safety has been 

a goal pursued by researchers. However, compared to general 

artificial intelligence systems, surgical data is costly to acquire 

and less interpretable, and a model is only valid for a single 

surgical task and lacks generalization capability [6]. However, 

in contrast to the complex multi-process decision-making tasks 

such as resection and suturing in general surgery, the simple, 

intravascular dynamic and stable mode of operation of tube-

filament access in interventional surgery provides a good 

environment for the training of automatic models and makes it 

easier to exploit the advantages of high precision and stability 

of robotic control [7]. The study of critical technologies for the 

automatic control of surgical robotic tube and wire access is a 

realistic and scientific attempt. The simplification and 

automation of tube and wire access operations can greatly 

relieve the technical and experiential pressure on interventional 

surgeons and provide new perspectives and tools for the 

development of surgical robots and vascular surgery by 

quantifying the implicit intraoperative features. 

Researchers from different teams have experimented with 

virtual training systems, automated catheter navigation in 

vascular in vitro models. Yang et al. at Imperial College of 

Technology attempted to use reinforcement learning algorithms 

to control a vascular interventional robot to complete 

autonomous over-arch operations on four aortic arch models, 

showing that the robot's operating force fluctuated over a 

significantly lower range than that of a human hand and 

operated at approximately half the speed of a human hand [8]. 

Using the dueling deep Q-learning (DQN) algorithm to control 

catheter entry into a heart model, You et al. at the University of 

Ulsan also demonstrated that a reinforcement learning strategy 

based on a simulated environment could control an actual 

catheter to complete a cardiac entry [9]. However, there are still 

problems such as lack of accuracy and a relatively simple 

model. Initial control using the Deep Deterministic Policy 

Gradients (DDPG) algorithm was implemented in a 2D 

environment by Karstensen et al. at Fraunhofer IPA, Germany, 

and performed well in a planar vascular model, but fell short for 

higher-level path control [10]. 

In this paper, we use reinforcement learning algorithms to 

implement control of catheter access in a simulation engine. 



The simulation process performed is an over-arching operation 

of the aortic arch, which is eventually trained successfully in a 

virtual environment and can be used in subsequent catheter 

access navigation in a real environment. 

The paper is structured as follows: Section II focuses on 

the building of vascular models and reinforcement learning 

methods. Section III introduces the arrangements of the 

experiment and analyse the results. Section IV and V present 

the discussion and the summarization of the paper. 
 

II.  METHODS 

 The methods we use in this research includes four main 

parts: modelling, reinforcement learning, the specific algorithm 

we use and the training engine. The mentioned four parts cover 

the two main issues- algorithms and simulation environments 

for reinforcement learning. 

A. Modeling 

 The process of modelling the aortic arch and catheter 

progresses from the base shape to the inclusion of more 

features. Its medical characteristics are primarily realistic, and 

the established model is subsequently fed into the Unity engine 

to establish its environmental parameters. 

 The movement of the guidewire through the vascular tree 

is simulated using Unity [11]. The walls of the vascular tree are 

rigid. The lumen is empty; thus, no dynamic resistance to the 

guidewire motion is considered. 

Our model, as shown in Fig. 1, is based on the angiographic 

image of the aortic arch, but with a partial simplification of the 

vascular connection at the vessel cross-section, so that the 

cross-sections of the model vessels are all circular, while the 

interface is a smooth connection. 

 In order to verify the function of reinforcement learning, 

this paper obtains the accuracy and stability of catheter 

autonomy learning by modeling simulated over-arch operations 

on the aortic arch. 

 

 
Fig. 1 Preliminary modelling of the aortic arch. 

B. Reinforcement Learning Methods  

The basic model of reinforcement learning is the 

individual-environment interaction. The individual/intelligent 

agent is the part of the individual that can take a series of actions 

and expects to achieve a high benefit or goal. The other parts 

associated with this are referred to as the environment. The 

whole process is discretized into different time steps. At each 

moment, the environment and the individual interact 

accordingly. The individual can take specific actions, which are 

imposed on the environment. After receiving the individual's 

action, the environment gives the individual feedback on the 

current state of the environment and on the reward that has been 

generated as a result of the previous action [12]. 

Reinforcement learning is a formal framework (Fig. 2) that 

uses Markov decision processes to define the process by which 

a learning intelligence interacts with its environment using 

states, actions and gains. 

In the basic setup of reinforcement learning, there are 

essential elements such as agent, environment, action, state, 

reward, etc. The agent interacts with the environment to 

generate trajectories, and by performing the action, the 

environment changes its state. The agent interacts with the 

environment, generating trajectories that cause the environment 

to change state by performing an action; the environment then 

gives the agent a reward (positive or negative) for its current 

action. Through this interaction, more and more experience is 

accumulated, and the policy is updated to finally form a closed 

loop. The mystery of why reinforcement learning can model the 

long-term benefits of decision-making lies in its optimization 

goal. To be specific, at each moment, the reward is a specific 

value and the agent's goal is to maximize the expectation of the 

reward it obtains [13]. This means that instead of maximizing 

the immediate reward, it maximizes the cumulative reward over 

time. 

For each state in a discrete finite state space, the 

probability of its transfer to another state depends only on that 

state itself- what is referred to as Markovness- the Markov 

decision process (MDP) differs from a Markov chain in that in 

each state, an action can be chosen by the individual from the 

space of possible actions [14]. Also, Markovness can generally 

be enhanced if not just the current moment's state, but multiple 

previous moments' states are selected and superimposed as the 

current state. 

 

 
Fig. 2 Reinforcement learning method process. 
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C. Asynchronous Advantage Actor-critic(A3C) 

 In this section, the background of the emergence of A3C 

and its advantages are presented with a contrast between 

previous methods. Finally, the single A3C network algorithm is 

given. 

 Asynchronous advantage actor-critic is an algorithm 

proposed by Google DeepMind to solve the Actor-Critic non-

convergence problem [15]. While DQN is vital because it has 

an experienced pool that reduces the correlation between data, 

A3C proposes an alternative way to reduce the correlation 

between data: asynchronously. 

A3C creates multiple parallel environments and allows 

multiple agents with sub-structures to update parameters in the 

main structure on these parallel environments simultaneously. 

The agents in parallel do not interfere with each other, while the 

parameter updates of the primary structure are interfered with 

by the discontinuity of the updates submitted by the 

substructures, so the correlation of the updates is reduced, and 

convergence is improved. 

The main idea of A3C is asynchronous, corresponding to 

the asynchronous distributed RL framework. Corresponding to 

Google's Gorilla platform Massively Parallel Methods for Deep 

Reinforcement Learning in 2015, Gorilla uses different 

machines with the same PS. While in A3C, it is the same 

machine with multi-core CPUs, which reduces the parameter, 

and in A3C, it is the same machine with multiple CPUs, which 

reduces the cost of transferring parameters and gradients, and 

the validation iterations are significantly faster in the paper. 

And more importantly, it is an actor-learner pair with multiple 

threads on the same machine; each thread corresponds to a 

different exploration policy, and the overall inter-sample 

correlation is low, so it is no longer necessary to introduce an 

experience replay mechanism in DQN for training [16]. This 

enables an on-policy approach to training. In addition, the CPU 

is used in training instead of the GPU because the RL batch is 

generally small during training and the GPU is much idle while 

waiting for new data. 

Different types of deep neural networks provide an 

efficient operational representation of the policy optimization 

task in DRL [17]. To alleviate the instability that occurs when 

combining traditional policy gradient methods with neural 

networks, various types of deep policy gradient methods use an 

empirical replay mechanism to eliminate the correlation 

between training data. 

However, there are two main problems with the empirical 

replay mechanism: Each real-time interaction between the 

agent and the environment requires a lot of memory and 

computational power; the experience replay mechanism 

requires the agent to learn using an off-policy approach, which 

can only be updated based on the data generated by the old 

policy; and the training of DRLs has previously relied on 

computationally powerful graphics processors [18]. 

The A3C algorithm first constructs a global network. This 

network will consist of convolutional layers for spatial 

dependencies, followed by LSTM layers for temporal 

dependencies, and finally value and policy output layers [19]. 

The process of the algorithm is shown below: 

Algorithm 1. A3C network learning process 

1      Input: public part of the A3C neural network 

parameters θ, ω 

2      Update time series t=1 

3      Reset the gradient updates of Actor and Critic 

4      θ’=θ, ω’=ω 

5      Initialize state start t 

6      Choose action at based on policy π(at| st; θ) 

7      Execute action at to get reward rt and new state 

8      t←t+1,T←T+1 

9      If st is terminated, then go to step 10, otherwise go 

back to step 6 

10    Calculate Q(s,t) for the last time series position st 

11      For i∈(t-1,t-2,... .tstart): 

1) Calculate Q(s, i) for each moment: 

Q(s,i)=ri+γQ(s,i+1) 

2) Local gradient update of the cumulative Actor 

3) Local gradient update of the cumulative Critic 

12      Update the model parameters of the global neural 

network. 

θ=θ-αdθ, w=w-βdω 

13      If T>Tmax, then the algorithm ends and outputs the 

public part of the A3C neural network parameters θ, ω, 

otherwise go to step 3 

D. Training Engine 

 The setup consists of the controller (DRL-Agent), a 

simulated environment created in Unity. The simulation in 

Unity is used to generate training data for the DRL-Agent [20].  

In addition, Unity's ml-agents provide a reinforcement 

learning environment in which the vascular rigidity model can 

also be modelled in the unity environment and trained for entry 

to verify the applicability of the algorithm. Unity's setup is 

simple among the simulation applications, but the adaptation to 

vascular elasticity is somewhat lacking when used [21]. 

 Most of the current games have a large number of Unity 

games, a perfect engine, and a good training environment to 

build. Since Unity can be cross-platform, it can be trained under 

Windows and Linux platforms and then converted to WebGL 

for publishing to the web [22]. Furthermore, ml-agents is an 

open-source plug-in for Unity, which allows developers to train 

in Unity's environment, without even writing code in python, 

without a deep understanding of PPO, SAC and other 

algorithms [23]. As long as developers configure the 

parameters, they can easily use reinforcement learning 

algorithms to train their own models [24]. 

 

 
Fig. 3 RL learning environment in Unity. 



III.  EXPERIMENTS AND RESULTS 

TABLE I 
PARAMETERS OF THE TRAINING PROCESS 

Simulation distribution update parameters 

Minibatch size 2000 

Training update size 1000 

Replay memory size 400000 

Update frequency 20 

Learning rate 0.001 

Discount factor 0.9 

Episode size 2000 

Episode step 1000 

Optimizer RMSPRob 

 

 The parameters of the reinforcement learning process were 

set as Table 1. And the results of A3C learning are shown in 

Fig. 5, and as shown in the figure, the final results obtained from 

the training can corroborate that the model was successfully 

trained to achieve stable returns, with large fluctuations in the 

choice of losses, which may be related to the instability of the 

model itself at the time of collision. 

 
Fig. 4 RL learning process of catheter in Unity. 

 

         The A3C algorithm was added and retrained for 

comparison to obtain different results of the algorithm for the 

simulation of vascular interventional procedures in the built 

training environment. The virtual environment for training is 

represented in Fig. 4, and using the catheter to access the aortic 

arch and perform over-arch manipulation, we derived the 

subsequent results. 

 
(a) Result of the cumulative reward. 

 

 
(b) Result of the policy loss. 

Fig.5 Results using A3C algorithms. 

 

From Fig. 5(a), it can be concluded that the training of 

reinforcement learning starts to stabilize when it reaches 30K 

times, and the final reward value reaches stability in 30K-50K 

training episodes, but there are still fluctuations. But the overall 

result of the reward is consistent with the expected training 

results of the A3C algorithm. 

From Fig. 5(b), it can be seen that the loss function does 

not get a convergence result after a certain time of training, and 

always fluctuates up and down throughout the training process, 

the magnitude of fluctuations is larger, but the overall trend is 

converging to zero. This is in line with the characteristics and 

trend of policy loss in reinforcement learning training. 

IV.  DISCUSSIONS 

The research in this paper is divided into two main 

processes: the modelling part and the model training part.  

In the modelling part, we try to provide an environment for 

subsequent algorithm training by modelling the aortic arch. The 

model of the aortic arch is based on the real vascular 

environment, but due to the high complexity of the vasculature 

and the difficulty to monitor the internal environment in real 

time, the modelling process simplifies the structure of the 

vasculature and ignores the blood flow and the more complex 

respiration and pulsation in the vasculature, which needs to be 



solved by more accurate modelling and imposing fluid motion 

in the model.  

In the training part of the model, the final training results 

obtained using the A3C algorithm showed that the reward 

training of the model was more in line with expectations and 

was able to achieve reward stability in a short step; however, 

the fluctuation of the loss function was large and did not 

converge after a certain length of training, which may be due to 

the parameter settings in the training, or the large fluctuation of 

the catheter position in the training environment This may be 

due to the parameter settings in the training, or it may be due to 

the large fluctuations in the position of the conduit in the 

training environment, which does not converge to the same 

stable path. These problems need to be solved by tuning the 

parameters and imposing more constraints on the catheter in 

subsequent studies. 

V.  CONCLUSIONS 

In this paper, we aim to use reinforcement learning 

algorithms to implement control of catheter access in a 

simulation engine. The simulation process performed is an 

over-arching operation of the aortic arch, which is eventually 

trained successfully in a virtual environment and can be used in 

subsequent catheter access navigation in a real environment. As 

the result shows, this concept is feasible and can further 

improve the model accuracy and algorithm accuracy. 

To date, we have been investigating the feasibility of our 

approach using highly idealized vascular models and just a 

guidewire. But there is still a long way to go before 

reinforcement learning can be applied to real-world scenarios. 

The complex environment that changes at any time in the 

vasculature requires a simulation environment with sufficient 

vascular complexity, while being able to simulate blood flow, 

pulse, heartbeat and other influencing factors, which will be a 

huge project. The results show that the A3C algorithm is able 

to obtain more desirable results in these idealized models. 

Future studies should address the mentioned limitations by 

adjusting the agents and settings to fit more realistic vessel 

geometries, as well as by using both guidewires and catheters. 

Also, the specific contact of the vessel wall with the catheter 

guidewire and its own elastic characteristics should also be 

properly characterized. 
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