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 Abstract – Virtual reality (VR) interventional training 

systems are commonly used for vascular interventional surgery 

training. Compared with traditional training method, including 

using human cadavers, live animals and vascular phantom, VR 

interventional training has many advantages such as low training 

cost and variable training model. For virtual interventional 

radiology, simulating catheter interaction is a challenging work. 

Centerline of the vasculature is often used to detect the contact 

between blood vessel wall and surgical tools. In this paper, we 

proposed an improved centerline extraction method based on 

generalized rotational symmetry axis. The method discretizes the 

vasculature by a set of continuous cylindrical shapes. This 

discretization obtains an effective strategy for vasculature 

centerline extraction. In order to improve the algorithm 

efficiency, we use a pre-processing strategy to merge duplicate 

points and normal vector for vasculature mesh. This strategy 

turns the vasculature mesh into vasculature point cloud and 

reduced the number of calculation points. The performance of 

our method is experimentally validated. 

 
 Index Terms – Centerline extraction, rotational symmetry axis, 

vasculature mesh, virtual interventional radiology, VR 

interventional training system. 

 

I.  INTRODUCTION 

 Coronary artery diseases, including the angina and 

myocardial infarction, is one of the main causes of mortality 

in developed countries [1-3]. Vascular interventional surgeries 

(VIS) are commonly used to treat these diseases because it has 

some advantages such as small incision to the healthy tissue, 

short recovery time, little postoperative, and good surgical 

outcomes [4-7]. However, vascular interventional surgeries 

require surgeon to be highly skilled at manipulating the 

surgical tools to reach lesion under the two-dimensional X-ray 

image guidance [8-10]. Traditional interventional training 

methods, including using human cadavers, live animals and 

vascular phantom, have many limitations such as expensive, 

risky and limited morphological models. Moreover, prolonged 

exposure to X-ray radiation during training procedure will 

cause a serious impact for the physicians’ health [11].  

 Virtual reality interventional training systems were 

developed as a means of improving training and reducing the 

costs of education. Computer-based simulation of 

interventional surgeries provides a versatile solution and can 

virtually be reused infinite times on both common and rare 

cases. Moreover, patient-specific data can be used to 

reconstruct vasculature mesh, which helps surgeon to plan or 

rehearse preoperatively to evaluate and optimize the surgeries 

[12]. For VR interventional training system, one of the most 

challenging works is to simulate the dynamical behavior of 

guidewires and catheters. This requires accurate detection of 

contact between surgical tools and blood vessel wall. The 

commonly used method is to detect the contact by calculating 

the distance between the catheter and the centerline of the 

vasculature. Moreover, surgeons are usually interested in both 

the patient’s vasculature and its centerline. The VR simulator 

need to provide the vasculature centerline to encourage 

operators to move both the catheter and guidewire along the 

centerline to reduce collision.  

 The centerline is closely related to curve skeletons. 

Blum’s medial axis and its variants is designed to obtain 

centerline by capturing reflectional symmetries in a shape 

[13]. The medial axis of a 3D model is generally a non-

manifold containing 2D sheets that are hard to store and 

manipulate. A 1D centerline is more useful in practice. Most 

commercial software use volume data to extract the 

vasculature centerlines, such as MeVisLab and MedCAD [14, 

15]. However, when volume data is lacking, the software does 

not work very well. Sharf et al. proposed a method to compute 

a curve skeleton by a deformable blob grown form the 

“inside” of input cloud [16], and Tagliasacchi et al. achieve 

the extraction through a ROSA-based method [17]. These two 

methods are based on point cloud and can run under moderate 

amounts of missing data. Wang and Lee used iterative least 

squares optimization method that shrinks models and applies 

the thinning algorithm to extract 1D skeletons [18]. Au et al 

used implicit Laplacian smoothing with global position 

constraints to contract the mesh [19]. The contracted mesh is 

then converted into the curve skeleton while preserving the 

shape of the contracted mesh and the original topology. These 

methods aim to deal a series of shapes for a wider 

applicability. However, these methods are complicated and 

hard to be performed on vasculature mesh. 

 In this paper, we propose an improved centerline 

extraction method based on generalized rotational symmetry 

axis (ROSA) [17, 20]. Our method discretizes the vasculature 

mesh by a set of continuous cylindrical shapes. The centerline 

of vasculature is most appropriately thought of as a 

generalized rotational symmetry axis and it is composed of the 

center point for each cylinder. Moreover, our method can 



effectively exploit orientation information to compute ROSA 

so as to compensate for the missing. Due to the vasculature 

mesh is made up of tiny triangle planes, the point cloud of 

vasculature mesh contains duplicate vertices. Our method uses 

a pre-processing strategy to merge duplicate vertices. 

Meanwhile, the plane normal vectors are converted to vertex 

normal vectors. This strategy turns the vasculature mesh into 

vasculature point cloud and reduced the number of calculation 

points. Therefore, the computational complexity of the 

algorithm is reduced. 

 The remainder of this paper is organized as follows. The 

proposed method is presented in Section II. In Section III, 

experiment is finished. Finally, the conclusion is given in 

Section IV. 
 

II.  CENTERLINE EXTRACTION BASED ON ROTATIONAL 

SYMMETRY AXIS 

 An VR interventional training system includes the master 

side and VR simulator, as shown in Fig. 1. The master side is 

used to measure the motion of input catheter and provide the 

haptic force feedback. Our research group has developed the 

master side with haptic force interface which can provide 

high-accuracy force feedback [21-25]. VR simulator is used to 

provide the vasculature mesh and simulate the interaction 

between surgical tools and blood vessel wall. The vasculature 

modeling is based on curve skeleton and radius information 

from the patient vasculature information. Our research group 

proposed a vasculature reconstruct method [26-29], which can 

extract the vasculature information from computed 

tomography (CT) or magnetic resonance angiography images. 

For vasculature simulation, centerline extraction is the 

foundation of application. In this section, we introduce an 

improved centerline extraction method based on generalized 

rotational symmetry axis.    

 

A. Discretization of Vasculature Mesh 

 In generally circumstances, the cross-section of the blood 

vessel can be considered as a circular shape. The blood vessel 

can be approximated as the cylindrical tube. This cylindrical 

tube can be discretized as a set of continuous small cylindrical 

shapes, as shown in Fig. 2. Thus, the rotational symmetry axis 

from these small cylindrical shapes form the centerline of the 

blood vessel. For each small cylindrical shape, the center point 

of shape is lies on the centerline, and the radius of cylinder is 

the radius of blood vessel. We define a cutting plane through 

the center point of cylindrical shape and the normal of this 

plane is same as centerline. The subset S contains all the 

vertices for this cutting plane, and the center point is defined 

as  with position  and normal . This point 

is called ROSA point which is most rotationally symmetric 

about S.  

 Based on the above assumptions, we can obtain that the 

angle between the normal  and the normal of other vertexes 

in subset S is always same, and this consistent with the notion 

of rotational symmetry. Moreover, the sum of distances 

between the position  and the line extensions of the 

vertexes normal in subset S is minimum. The definition is 

illustrated in Fig. 3. 
    

B. Centerline Extraction via Rotational Symmetry Axis 

 We need use planar cuts over the vasculature mesh to 

search the ROSA point. Let  be a vertex in vasculature. 

Suppose a cutting plane  through the point  with normal 

, and the subset  is formed by the vertexes which are 

close to cutting plane  within a distance less than a 

threshold . In this research, we set , where L is 

 
Fig. 1 An overview of our VR interventional training system. 

 

 
Fig. 2 A illustration for discretization of vasculature mesh. The rotational 
symmetry axis point forms the centerline. 

 

 
Fig. 3 The definition of rotational symmetry axis for a subset S. (a) The 

normal minimizes sum of angular variations with the vertex normal in S. (b) 
The position minimizes sum of projected distances to the normal extensions. 

 



the bounding box diagonal of the vasculature mesh. Moreover, 

the cutting plane may through multiple shapes, as shown in 

Fig. 4. Thus we use k-means method to further identify the 

points close to the cutting plane , a relevant neighbourhood 

 of point cloud samples. In order to avoid a full-fledged 

clustering problem,  is anchored at , i.e., . 

Therefore, Mahalanobis distance [30] is used to drive the , 

and a threshold  is chosen to construct a graph on all the 

point cloud samples, where the edge between  and  if and 

only if . 

 However, not all cutting planes require rotational 

symmetries. For each vertex  in vasculature mesh, we 

should search for the best cutting plane . Specifically, the 

normal of  should be most rotationally symmetric about the 

vertex normal in . This problem can be solved iteratively, 

and Fig. 5 demonstrates this iteration process. We set an initial 

normal , which satisfies . Then the normal is 

iteratively update by 
 

  (1) 

 

where N is the size of  and  is the relevant 

neighbourhood at t-th iteration.  is the normal of vertex in 

.  measures the angle between the vectors. By 

using singular value decomposition, Eq. 1 can be rewritten as 

one which minimizes the quadratic from  with matrix 
 

 (2) 

 

where X denotes a random variable for the x-component of the 

point normal in S, and  denotes the average of these x-

components, similarly for Y, , Z and . 

 Next is to compute the position . The computed points 

collectively form the initial centerline point cloud. The 

position  is calculated by minimizing the sum of squared 

distances from  to the normal lines. 
 

  (3) 

 

where  is a vertex in  and  is the relevant 

neighbourhood for the best cutting plane , N is the size of 

, and  is the cross product of two vectors. 

Eq. 3 has a closed form solution by straightforward 

differentiation. 

 In the branch regions, the computed ROSA point is like a 

1D structure, but the same does not hold for joints. Normally, 

the joint regions are not a cylindrical shape, thus it hasn’t a 

meaningful optimal cutting plane. In order to maintain 

continuity, the Laplacian smoothing is used to connect the 

point from different branch regions. Moreover, the principal 

component analysis (PCA) is used to project ROSA point 

cloud onto their corresponding locally best-fitting lines. 

Before thinning the point cloud, we need to distinguish the 

ROSA point in the joint regions from those in the branches. 

Specifically, here use a standard linearity measure 
 

  (4) 

 

at a ROSA point , where  is the j-th largest eigenvalue 

from the PCA at . The thinning process uses 1D moving 

least squares (MLS) construction. When , it 

means that  is in a branch. In this research, the threshold 

 is set to 0.4. Finally, short curve segments method [31] 

is used to connect the samples to obtain a 1D curve skeleton. 
 

C. Pre-processing 

 Traditional vascular-modeling methods reconstruct the 

vasculature mesh via extracting the vascular surface from 

volume images using the marching-cubes or skeleton-climbing 

algorithm [32]. The vasculature mesh is made up of tiny 

triangular planes. A vertex in vasculature mesh may be 

contained in different triangular planes. There exist two 

problems when we apply the centerline extraction method in 

vasculature mesh. One is that the vasculature mesh contains a 

 
Fig. 4 The cutting plane for a vasculature mesh. The optimal cutting plane 

and relevant neighbourhood points (green points) anchored at a point sample 

(red point). 

 

 
Fig. 5 2D illustration of iteration process. (a) The process for obtaining the 

best cutting plane. (b) When converging, the ROSA point (red point) is 

located at the intersection between  and . 

 



lot of repetitive vertex, and the normal for repetitive vertex is 

different. These repetitive vertex does not increase accuracy 

but increase running time. Another problem is that the 

vasculature mesh is generally described as a closed entity 

rather than a hollow pipe. As a result, the end of the shape is a 

circular plane. The center point of this circular plane located at 

centerline of vasculature mesh. Therefore, this point will 

interfere with the centerline extraction method iterative 

searching for the ROSA points.  

 To solve these two problems, we propose a pre-

processing method to deal the vasculature mesh before 

running the centerline extraction algorithm. Firstly, we 

measure the distance between the vertex to merge the 

repetitive vertex. If , we combine  and  as 

one vertex, where  is Euclidean distance and  is the 

threshold. For each merged vertex, the normal is calculated by 
 

  (5) 

 

where N is the merged number for a vertex.  is 

normalization for the normal vector. Next, we detect the center 

point for a plane. If the normal for a vertex is always same, 

and the merged number for this vertex is large than threshold, 

we consider it is the center point for a circular plane. This 

vertex will be removed from the processed mesh. 
 

III.  PERFORMANCE EVALUATION 

 In this section, we assess the improved method on two 

vascular model to verify its performance. The experimental 

result is visualized. In addition, we compared the number of 

model vertex and running time after pre-processing. 
 

A. Experimental Setup 

 We use two vascular model to verify the improved 

method. One is a bifurcated vessel model, as shown in Fig. 6 

(a). Another is established based on the rigid vascular model, 

as shown in Fig. 7 (a). For visualization, the vascular model is 

made up of tiny triangular planes with red color. 

 The improved centerline extraction method is conducted 

in Matlab 2018b, and the computer is equipped with an Intel 

Core i7-8750H CPU with 16 GB memory, and an NVIDIA 

GeForce GTX 1060 GPU. The operating system is Windows 

10. We use OpenGL to do the rendering task and the software 

is written in Python. 
 

B. Experimental Result 

 The centerline extraction result for the bifurcated vessel 

model is shown in Fig. 6 (b), and Fig. 7 (b) is the result for the 

rigid vascular model. In the results, the black points are the 

extracted rotational symmetry axis points. The final centerline 

is visualized as green line. The results show that the improved 

centerline extraction method is sufficient to extract a complete 

centerline. However, it is nearly impossible to obtain a 

ground-truth centerline from a vasculature mesh. Therefore, 

we do not calculate the error of the extracted centerline. Our 

pre-processing method can effectively reduce the number of 

vertices while maintain the integrity of the vascular model. 

The comparation of the number of model vertex after pre-

processing is shown in TABLE I. 

 

IV.  CONCLUSION 

 In this paper, we proposed an improved centerline 

extraction method based on generalized rotational symmetry 

axis. Our method assumes that the vasculature mesh is formed 

by a set of continuous cylindrical shapes. The centerline of 

vasculature is considered as a generalized rotational symmetry 

 
Fig. 6 The experiment in the bifurcated vessel model. (a) Visualization of the 

bifurcated vessel model. (b) Centerline extraction for the bifurcated vessel 

model. The ROSA points are visualized by black point and centerline is using 
green line. 

 

 

 
Fig. 7 The experiment in the rigid vascular model. (a) Visualization of the 

rigid vascular model. (b) Centerline extraction for the rigid vascular model. 

The ROSA points are visualized by black point and centerline is using green 
line. 

 
TABLE I 

COMPARATION OF THE NUMBER OF MODEL VERTEX AFTER PRE-PROCESSING 

Vascular model Vertex number Vertex number* 

Bifurcated vessel model 5.1 k 0.8 k 

Rigid vascular model 9.2 k 1.5 k 

* Pre-processed model 

 



and the center point of each cylindrical shape is located at 

centerline. Due to rotational symmetry, the method can 

compensate for the missing data for vasculature mesh. To 

improve the operation efficiency, we proposed pre-processing 

strategy to merge duplicate vertices. Meanwhile, the plane 

normal vectors are converted to vertex normal vectors. Via the 

pre-processing strategy, the vasculature mesh is turned to 

vasculature point cloud. The experiment show that the 

improved centerline extraction method is sufficient to extract a 

complete centerline, and the pre-processing can effectively 

reduce the number of vertices while maintain the integrity of 

the vascular model. 
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