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Abstract –Simple visual odometer such as ORB_SLAM2 

algorithm has its limitations, in a short time to move fast, the 

image is blocked, the image features are sparse can not work 

stability. The inertial measurement unit (IMU) could calculate 

the trajectory well in a short time, but it was easy to accumulate 

too much error in a long time. So we used the visual positioning 

information to estimate the zero deviation of the IMU, reduce the 

divergence and accumulation error caused by the zero deviation 

of the IMU. And the IMU can also provide the positioning for the 

vision when moving fast. In this paper, two localization 

algorithms are fused by untraceable Kalman filter to form a 

more robust localization algorithm. According to the motion 

model of IMU, the pose was obtained by integrating it. In the 

visual part, fast and effective ORB feature points were selected 

for feature tracking and the camera pose was solved. Finally, the 

visual inertial odometer solution propose in this paper was 

experimented and verified. The comparative experiments are 

carried out on the TUM data set first, then on the mobile robot. 

The hardware platform of the experiments was a mobile robot 

equipped with a camera and IMU, and the experimental 

environment is a general indoor environment. The effectiveness 

and reliability of the visual inertial odometer designed in this 

paper on mobile robot are verified through experiments. 

Compared with the pure visual odometer, the scheme is stable, 

faster and practical. 

 
Index Terms – ORB SLAM2, Inertial Measurement Unit, 

Untraced Kalman filter , The spherical underwater robot 

I. INTRODUCTION 

Visual SLAM was implemented mainly with the help of 

filters when it was first developed in the early 

years.Subsequently, the nonlinear optimization of visual 

SLAM system based on the minimization of key frame and 

cost function is gradually developed. Parallel Tracking and 

Mapping(PATM) proposed by Klein et al. and open source is 

the first nonlinear monocular SLAM system.Moreover, the 

key frame mechanism is introduced so that the VO system 

does not have to deal with every frame of image, which 

greatly strengthens the real-time performance of VO. In 

addition, PTAM realizes the parallelization of tracking and 

mapping, and divides the tracking part and mapping part into 

two parts, which contributes the concept of front and rear end 

for modern visual SLAM. Since PTAM has been used for 

some years, its defects are more obvious now, such as small 

application scenarios, easy tracking loss, and no loop detection 

to eliminate cumulative errors. [1]-[7] 

In 2015,Mur-Artal et al. proposed and open-source ORB-

SLAM, the benchmark work of modern visual SLAM 

system.ORB-SLAM has made many optimizations and 

improvements on the basis of PTAM.The main features are as 

follows: ORB feature points with vision and rotation 

invariance are selected as feature points;The ORB-SLM has a 

closed-loop detection mechanism to detect previously traveled 

areas and eliminate error accumulation;ORB-SLAM 

automatically selects two frames to complete the monocular 

initialization by searching the maximum apparent 

parallax.Loop detection is used to eliminate cumulative errors. 

In visual SLAM, their pose estimation depends on the 

feature points in the environment. When the camera moves 

quickly or the Angle of view changes too much, positioning 

failure will occur.This is a fatal shortcoming in commercial 

applications. In addition, monocular SLAM cannot determine 

the scale of the trajectory, which is also a source of error. [8]-

[11]  

In our real life, robots often do not carry only one sensor. 

For example, the driverless car, which is very popular 

recently, also uses the scheme of multi-sensor fusion.This is 

because in a complex environment, a single sensor is difficult 

to achieve a stable and ideal positioning effect. After the IMU 

is fused with the camera, a scheme combining the advantages 

of the two is expected to be obtained. Therefore, the 

navigation and positioning method integrating vision and 

inertia has become one of the current research hotspots in this 

context. However, the calculation of VIO is very complicated, 

mainly because the IMU measures the acceleration and 

angular velocity, so we have to build the motion model of the 

IMU. At present, VIO can be divided into two fusion methods 

of loose coupling and tight coupling, and back-end processing 

methods can be divided into two methods of filtering and 

optimization. But in theory, more accurate results should be 

obtained by adopting tight coupling and optimization. 



However, in VIO, due to the high frequency of IMU data and 

the image data, the system has a large amount of computation. 

Therefore, the effect of the optimization based fusion 

algorithm is not significantly better than that of the filtering 

algorithm in the case of limited computing capacity.  

Mourikis et al. proposed a tightly coupled filtering based 

method, MSCKF, in 2017.MSCKF solves the traditional 

method based on extend kalman filter VIO dimension 

problems too much, when SLAM MSCKF not add the feature 

points to the state vector, but the camera pose of different time 

to join the state vector, the feature points would be more than 

one camera to see, thus in geometric constraints between the 

state of multiple cameras, after using geometric constraint 

observation model was constructed to update EKF. 

Stefan Leutenegger proposed a visual inertial fusion 

method, OKVIS, in 2015.Unlike MSCFK, which uses Kalman 

filter optimization, OKVIS uses keyframes and nonlinear 

optimization to estimate the pose. In addition, OKVIS 

combines the camera reprojection error and the IMU 

integration error into a back-end optimization function, 

integrating the IMU information and visual information into 

one optimization problem. But the shortcoming is that this 

method does not add loop detection to achieve global 

optimization, so positioning errors will inevitably accumulate 

over time.  

Called VINS - Mono is the Hong Kong university of 

science and technology in 2017, Dr Qin Tong a VIO algorithm 

is put forward and open source, its front end USES GFTT 

feature points extraction combined with multilayer KLT light 

flow tracking, after to get a better effect of feature matching, 

using loosely coupled initialized data visual inertia, the 

backend is adopted key frames and the optimization of sliding 

window method, and use the Ceres library of nonlinear 

optimization in searching the posture, update another loopback 

detection based on DBoW2 can eliminate the accumulated 

error, can have better global consistency. 

In recent years, MSF and SSF developed by ETH Zurich in 

Switzerland have adopted the loose coupling scheme. SSF, for 

example, SSF first on camera image processing, complete 

position, after the camera visual part is used to estimate the 

results with the measured value of the IMU joint construction 

of state variables, using EKF to forecast the quantity of state 

and after update, the whole process of filtering and fusion 

visual observation as auxiliary to correction of IMU integral 

value, the multi-sensor fusion algorithm based on EKF is 

relatively small amount of calculation, but is not accurate, 

because in nonlinear system is more serious, because EFK is 

depend on the state of linearization to spread so mean and 

covariance of EKF estimation are not accurate. In this paper, 

an improved ORB-SLAM2 algorithm based on untracked 

Kalman filter is proposed to achieve a more accurate 

positioning effect on robots with limited computing power. 

II. THE SPHERICAL UNDERWATER ROBOT 

With the expansion of human exploration, more and more 

researchers devote themselves to the development and 

application of mobile robots.Mobile robot has high application 

value in narrow and strange environment.The spherical 

amphibious robot is a kind of robot that can move on land and 

underwater. It is equipped with sensors such as camera and 

IMU unit so that it can move and collect image data in 

complex environment. 

The spherical amphibious robot is shown in Figure 1.The 

robot has legs, and two servo motors on each leg are used to 

control the movement of the legs. When the controller controls 

the four legs to work together, the robot can move on the land. 

The gait of the robot is shown in Figure 2.The tiptoe of each 

leg is equipped with a water jet motor. When the robot is 

underwater, the direction of the water jet motor can be 

adjusted by the motor to realize the underwater movement of 

the robot. 

 
Fig.1 The spherical underwater robot’s structure 

(a) (b)

(c) (d)  
Fig. 2 Robot’s gait 

 

III. VISUAL-INERTIAL LOCALIZATION RESEARCH 

A. ORB-SLAM2 Visual Odometer Model 

ORB-SLAM2 algorithm is implemented by three parallel 

threads: tracing, local mapping and loop detection.In the 

tracking thread, image feature points are collected and pose 

information is estimated.After receiving the image 

information of the camera, the tracking thread will perform the 

following steps on each frame of the camera image: [12]-[19] 

1). Mage Preprocessing 

This step will carry out gray conversion, ORB feature 

extraction, image edge calculation and other operations on the 

collected image information.The algorithm extracts FAST 

corner points from an 8-layer image pyramid.In order to 



ensure uniform distribution of feature points, the ORB-

SLAM2 algorithm divides each layer of images into grids and 

extracts at least 5 corner points from each grid.Then detect 

each grid corner points, if the number of corners is not 

enough, adjust the threshold.If no corner points can be 

detected in some cells, the number of corner points extracted 

will be reduced accordingly.Finally, the direction and ORB 

feature descriptor are calculated according to the reserved 

corners of FAST.The ORB feature descriptor will be used for 

all subsequent feature matching of the algorithm. 

2). Estimate The Initial Pose 

If a frame image tracking success, the algorithm with the 

movement rate constant model to predict the current position 

of the camera (i.e., think the camera is in constant motion), 

and then search a frame of image feature points on the map the 

corresponding matching point cloud point and the current 

frame image, finally using search to match point to solve the 

position by the PnP.However, if not enough matching points 

are found to solve the pose, the algorithm will enlarge the 

search scope, search whether the points near the map cloud 

point have matching points in the current frame image, and 

then optimize the camera pose at the current moment by 

finding the corresponding matching point pair.If the feature 

points can not be tracked after the search scope is expanded 

(then the motion model is invalid), then the word bag (BOW) 

vector of the current frame image is calculated, and several 

key frames are selected as alternative matching frames by 

using the BOW dictionary.Then, the ORB features 

corresponding to the map cloud points are calculated in each 

alternative key frame.Then, PNP algorithm is executed for 

each alternative key frame in turn to calculate the pose of the 

current frame.If we find a pose that covers enough valid 

points, we search for more matching cloud points 

corresponding to that keyframe.Finally, the location of the 

camera is further optimized based on all the matching points 

found. If there are enough valid data, the tracking program 

will continue to execute. The track thread flow for ORB-

SLAM2 is shown in Figure 3. 

 
Fig.3 Track thread flow 

After the above steps, the front end of ORB-SLAM2 

algorithm can calculate the current robot pose.However, if the 

camera moves quickly or the Angle of view changes too 

much, the positioning failure may occur. 

 

B. Establish The IMU Model 

1). The Coordinate System 

In the Inertial navigation of robot, the Earth-Centered 

Inertial (ECI) Frame is generally used as the reference 

coordinate system.The center of the earth is taken as the origin 

point, the northward axis is the Z axis, the X-Y plane is the 

equatorial plane, and the X axis points to the Vernal Equinox 

point (i.e. the intersection point of the centre-earth line and the 

equator in the annual spring equinox).The coordinate system 

is shown in Figure 4. 

 
Fig.4 The ECI coordinate system 

2). The IMU Model 

The general IMU is a six-axis sensor, including three-axis 

acceleration and three-axis angular acceleration.If the 

influence of scale factor is ignored and only white noise and 

deviation random walk are considered, then the angular 

velocity and acceleration obtained by IMU are: 

 b b g gb n = + +   (1) 

 ( )b w w a a

bwa q a g b n= + + +  (2) 

The superscript g represents the gyroscope, a  represents 

the accelerometer, w  represents the world coordinate system, 

and b  represents the IMU body coordinate system.The real 

value of the IMU is ,a , and the measured value is ,a . 

The derivative of position is the velocity, the derivative of 

velocity is the acceleration $a$measured by IMU, and the 

angular velocity of rotation is the angular velocity 

 measured by IMU. Therefore, the motion model of IMU 

can be expressed as 
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According to the above derivative relation, the motion 

model of IMU in continuous time can be deduced.Suppose 

from the Pose, Velocity and Quaternion at any time of I , by 

integrating the measured value of IMU, the PVQ formula at 

the time of j can be obtained: 
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Since our measurement data are discrete, Euler's method is 

used to discretization Formula (5). The positions from two 

adjacent moments k to k+1 are calculated with the measured 

value ,a at the k moment.The kinematics formula of IMU in 

the discrete state is obtained as follows: 
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C. Kalman filter setup and sensor fusion 

Both SLAM algorithm and inertial navigation are nonlinear 

systems.State estimation is a difficult problem in nonlinear 

systems.Kalman Filter (KF) is only applicable to linear 

systems.The Extended Kalman Filter (EKF) linearizes 

nonlinear systems using Taylor expansion.However, the error 

of EKF in a strongly nonlinear system is very large.At the 

same time, it is necessary to calculate the first-order partial 

derivatives, that is, Jacobian matrix, when updating the 

system, which undoubtedly increases the amount of 

calculation and aggravates the burden of the processor.In this 

paper, a novel filtering algorithm Unscented Kalman Filter 

(UKF) is used to replace the traditional EKF. Its calculation 

accuracy is higher than EKF and the calculation of Jacobian 

matrix is omitted. UKF USES the statistical linearization 

technique, we called this linearization method of 

nondestructive transformation (unscented transformation) this 

technique mainly through n acquisition in the prior 

distribution of points (we call them the sigma points) of linear 

regression to linearize nonlinear function of random variables, 

since we consider is an extension of the random variable, so 

the linearization than Taylor series linearization strategy used 

by (EKF) is more accurate.Like EKF, UKF is mainly divided 

into forecast and update. 

Let the system state matrix be： 
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Assume that the uncertainty of the system is 
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The algorithm flow of untraced Kalman filter is as 

follows: 

Step 1: Initialize system state ,k kx P  

The first sensor data received after system startup is used to 

initialize the system. 

Step 2: Based on state ,k kx P generates Sigma point kX  

Through the states ,k kx P , we find a set of certain Sigma 

points, and the true mean and covariance of the position and 

pose can be accurately estimated by means of the mean and 

covariance of the Sigma points after transformation. 

Step 3: According to the model to predict the future point 

of Sigma 1|k kX +  

The Sigma point obtained at time k was substituted into the 

model to calculate the Sigma point at time k+1 

Step 4: 1| 1|,k k k kx P+ +  is predicted according to the state 

generated by the predicted Sigma point 1|k kX +   

Step 5: The predicted Sigma point 1|k kX +  is converted to 

the predicted measurement 1|k kZ + B when the measurement 

arrives. 

Step 6: According to the predicted measurement value 

| 1k kZ + and difference of the real measured value update 

system state 1| 1 1| 1,k k k kx P+ + + +  

IV. EXPERIMENTAL TEST AND RESULT ANALYSIS 

A. Run TUM Dataset to Get Data 

We first validate the reliability of the algorithm by using a 

data set on a computer to simulate reality. We use the 

technical university of Munich (TUM) data set, which 

provides a series of image streams and imu data for each 

frame. This experiment is based on the xyz data set in tum, 

which is collected by the camera in the context of a desk 

environment. By running the original algorithm and the 

improved algorithm, the data is compared. The original 

algorithm is compared to the real trajectory below. You can 

see that the trace of the original algorithm is moving, and there 

are some errors that make the trajectory inaccurate. Fig. 5 is 

the comparison between ORB-SLAM2 algorithm and the 

actual trajectory. 

 



 
Fig.5 ORB-SLAM2 algorithm compared with the actual trajectory 

 

The comparison between the improved algorithm and the 

real trajectory is shown in the following figure.It can be seen 

that compared with the original algorithm, the trajectory 

tracking of the improved algorithm is closer to the real 

trajectory, and the error is also less than the original algorithm. 

Fig. 6 is a comparison between the improved algorithm and 

the actual trajectory 

 
Fig.6 Comparison between the improved algorithm and the actual trajectory 

 

By comparing the error between the estimated trajectory 

and the real trajectory in the two simulations, we can see the 

data as shown in the TABLE I below 

 
TABLE I 

Absolute error data comparison 

 REMS Means Maximum Minimum 

Before 

improvement 
1.200 0.969 2.880 0.0771 

After 

improvement 
1.017 0.912 1.837 0.0229 

It can be seen that the improved algorithm is better than 

the original algorithm, and the effectiveness of the improved 

algorithm is verified in the simulation experiment. 

 

B. Experiments with The Real Environment 

We tested the algorithm in a real environment.The 

spherical amphibious robot carries an RGB-D camera for 

image acquisition. The size of the camera is 165x40x30mm 

and the maximum power is 2.5W, which is suitable for use in 

the robot. At the same time, the camera can capture 640x480 

images at a speed of 30 frames per second.After pictures are 

collected by the camera, they are processed by the Raspberry 

Pi 4B on the robot. The Raspberry Pi 4B used in this 

experiment has a dominant frequency of 1.5GHz and a 

memory of 4GB.We will control the robot to circle around the 

site, and the estimated trajectory diagram obtained by using 

the improved algorithm is shown in the figure below. 

 
Fig.7 The trajectory obtained by the robot running ORB-SLAM2 algorithm 

Then we use the improved algorithm to introduce the 

IMU information. The estimated trajectory obtained this time 

is shown in the figure below. 

 
Fig.8 The trajectory of the robot running the improved algorithm 

By comparing the errors of each algorithm in the two 

experiments with the real trajectory, the data are shown in the 

following TABLE II. It can be seen that the improved 

algorithm is more accurate. 
 

 



TABLE II 

Absolute error data comparison 

 REMS Means Maximum Minimum 

Before 

improvement 
1.523 1.153 2.467 0.0842 

After 

improvement 
1.012 1.095 1.944 0.0369 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, the positioning accuracy of the robot was 

improved by combining visual information and inertia 

information through untraced Kalman filter. Traditional visual 

positioning could not be used in places with little texture. It 

was easy to be lost in high-speed motion, while inertial 

navigation performs well in high-speed motion, but has zero 

drift error when it is stationary. This paper fuse visual 

navigation and inertial navigation by untraceable Kalman filter 

algorithm to improve the positioning accuracy. Compared 

with the traditional Extended Kalman Filter (EKF), the 

untraceable Kalman Filter (UNKF) had better linearization of 

the nonlinear system, and reduced the computation amount 

because it did not need to calculate the Jacobian matrix, so it 

could run on the robot with little computation amount. In the 

future, we will build and optimize the visual-inertia model to 

improve the positioning accuracy. 
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