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Automatic surgical path planning of the passive flexible tool encounters a prohibitive challenge, typically
in endovascular surgery (ES). The key problem is that unstructured surgical environment and tools’
unpredictable motion is hard to be explicitly modeled. We propose a generative adversarial networks
(GAN)-based framework (defined as surgical GAN) towards automatic guidewire path planning in real
time for ES. A novel GAN architecture is proposed by combining convolutional neural networks (CNN)
and long short-term memory networks (LSTM), which extracts and fuses the spatial features in medical
images and temporal features of historical tool path as the conditional information. It inputs the surgical
state information and continuously outputs the local future path of the guidewire tip. A training dataset
(3.5*105 samples) is collected under laboratory conditions with 10 surgeons. Effects of different CNN
architectures and path planning length on network performance are investigated. User experiments, with
the tasks delivering the guidewire tip inside a vascular model (endovascular evaluator) from the aortic
arch into the left common carotid artery (LCCA), left subclavian artery (LSCA), or brachiocephalic trunk,
are conducted with 10 novice surgeons in an operating room. The results shows significant improvement
of a path planning accuracy with surgical GAN compared with baseline networks (from 46.2%–69.78%)
and the non-rigid registration method (72.94%). Results of user experiments demonstrate an overall bet-
ter task performance with the guidance of planned surgical path. Collectively, surgical GAN can achieve
real-time path planning of the guidewire in simulated ES, and holds great potential for novice training
and robotic ES autonomy.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Even the most experienced surgeon may still experience diffi-
culties in finding the optimal surgical path for each surgery [1].
The main reasons are the variability of anatomical structure
between patients and the complexity of the surgical environment.
Computer-assisted automatic surgical path planning is beneficial
for this problem and has potential advantages as follows, but it
remains a challenge when faced with passive flexible tools, of
which the motion is hard to be modeled and predicted in real time,
in soft tissue surgery like the endovascular surgery (ES).
(1) Computer planned surgical path can be obtained by combin-
ing the experience of more than one expert surgeon. Their pre-
vious experience can be embedded in the difficult surgical
conditions[2].
(2) During the training procedure, the novice surgeon can prac-
tice under the guidance of optimal planned surgical paths,
which is conducive to the novice surgeon to learn the expert
surgeons’ experience[3].
(3) The autonomy of current master-follower surgical robots
[4,5] can be enhanced by autonomously tracking the planned
surgical path. It has been demonstrated that the semi-
autonomous robot assisted surgery provides potential access
to optimal surgical outcomes [2].

The unstructured surgical environment causes difficulties for
surgical path planning. Human tissues are always of irregular

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.05.044&domain=pdf
https://doi.org/10.1016/j.neucom.2022.05.044
mailto:jhzhang@hebut.edu.cn
https://doi.org/10.1016/j.neucom.2022.05.044
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
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shapes, the vessel for instance. In practice, it is hard to explicitly
model the anatomical shape of the vessel in real time. In several
previous researches of path planning for ES and ES robots [6,7],
the extracted vascular center line was regarded as the surgical path
for delivering the guidewire tip. But it is obviously unfitting since
the guidewire advances always along the vascular wall rather than
the center line. In addition, during guidewire insertion, the surgeon
always intermittently injects a low dose of contrast agent under X-
ray to observe the local surgical environment via 2D angiography
images. Only the varying local vascular image can be seen in real
time rather than the global image [8]. So, a real-time local path
planning method is important for ES, which is capable of modeling
the unstructured and changeable local scenes in 2D angiography
images.

The path planning in ES would be more difficult, when a passive
flexible surgical tool (like the guidewire commonly used in ES) is
used, because it is soft and its motion is hard to be modeled and
predicted in real time. Surgical path planning for rigid instruments
including puncture needles [1] and even controllable flexible
guidewires [9] are convenient, because of their available kinematic
models. However, the motion of a passive flexible tool is hard to be
modeled and calculated in real time due to its unpredictable defor-
mation. Although the finite element model method has potential to
model the guidewire, it is time consuming and always used for off-
line analysis [10].

Both the unstructured and changeable property of local scene
and unpredictable deformation of the passive flexible tools are
essentially highly non-linear problems. An explicit mathematical
model is hard to be established for surgical path planning in such
surgeries due to the high nonlinearity. Recently, deep learning
attached wide attention on medical image processing [11–13]
and showed outstanding capability for solving high-nonlinear
problems. In our previous work [14], a trained convolutional neural
network (CNN) is directly used for automatic navigation of basic
guidewire insertion tasks in a Y-shaped vascular model. It indicates
that deep learning provides a promising way to deal with the
above challenge.

In this paper, we present a deep learning-based framework to
address the challenge for real-time planning of guidewire path in
ES. We propose a novel Generative Adversarial Networks (GAN)
architecture, which is defined as surgical GAN. The proposed
framework is capable of modelling the unstructured surgical envi-
ronment and motion of passive flexible tools.

Our main contributions are as follows:

(1) We propose a novel surgical GAN architecture, which has
the capability of extracting and fusing spatial features and tem-
poral features. It is enabled by constructing the generator and
discriminator using combined CNN and LSTM.
(2) We present the attempt to employ GAN for surgical path
planning of a passive flexible tool in ES. It employs the features
extracted from both preprocessed medical images and histori-
cal tool path as the conditional information, and outputs in
real-time the local future path of guidewire tip.
(3) Comparing with baseline networks and the non-rigid regis-
tration method, we demonstrate the advantage of the proposed
method. The effect of path guidance on operators’ operation is
also evaluated.

2. Related work

2.1. Previous methods of surgical path planning

Surgical path planning of flexible needle in soft tissue has been
studied in previous research works. The methods can be mainly
divided into three categories[15]: numerical method, inverse solu-
568
tion mothed and search method. The numerical method consists of
the probability density function method [16] and the objective
function method [17]. Although numerical method is accurate in
calculation, it will not be adaptable in complicated clinical envi-
ronments with many kinds of irregular obstacles. Based on explicit
geometric inverse kinematics, Duindam et al. [18] proposed a
constant-time motion planning algorithm for steerable needles.
This method depends on the idealized kinematics of the needle
in a static and rigid environment. In addition, the inverse kinematic
method sometimes cannot guarantee the solvability. The search
method of the flexible needles mainly includes the artificial poten-
tial field method [19], the roadmap method [20], and the rapidly
exploring random tree (RRT) method [21]. The search method is
a relatively faster algorithm, but it cannot guarantee the optimal
path. Nowadays, the numerical method, inverse kinematics
method, and search methods are mostly used in geometrical envi-
ronments and static environments.

Learning-based method was also applied for surgical path plan-
ning. Back et al. [22] proposed a path planning method for auton-
omous robotic gallbladder resection using probabilistic roadmap
and reinforcement learning method. It was based on the precondi-
tion that the next state was predictable. For passive flexible tools,
the use of reinforcement learning method was unpractical due to
the unpredictable deformation of the tissue and tools. Schulman
et al. [23], towards surgical suturing, proposed a non-rigid
registration-based trajectory transfer for adapting a demonstrated
tying trajectory from the training geometry to the testing ones.

2.2. Medical image processing using deep CNN

Deep CNN was recently widely applied for medical image pro-
cessing, which demonstrated its capability for extracting and rec-
ognizing tissue’s features from the medical image. Litjens et al.
[24] reviewed the researches of deep learning in medical image
processing. Nasr-Esfahani et al. [25] proposed a CNNs-based
method for detecting vascular regions in digital subtraction
angiography (DSA) images. Similarly, Wang et al. [11] proposed a
novel deep learning-based framework for interactive medical
image segmentation by incorporating CNNs into a bounding box
and a scribble-based binary segmentation pipeline. Nie et al. [26]
proposed a deep convolutional adversarial network framework
for medical image synthesis. In our previous work[27], a CNNs-
based method was proposed for automatic diagnosis of intracranial
aneurysms in 3D Rotational Angiography based on a spatial infor-
mation fusion method. The image understanding capability of deep
CNN provides a promising way for surgical path planning by direct
perception of medical images.

2.3. Deep learning-based path planning

Surgical path planning can be considered as a time sequence
problem. Recurrent neural network (RNN) and LSTM are capable
of extracting context-related features of time sequence data [28],
such as natural language processing, pedestrian trajectory predic-
tion, and so on. Fernando et al. [29] proposed an LSTM network
architecture for pedestrian trajectory prediction, by using a soft-
hardwired attention mechanism. Gupta et al. [30] introduced the
LSTM network into GAN and proposed a Social GAN for pedestrian
trajectory prediction, where the encoder and decoder are con-
structed by a set of LSTM networks. Each LSTM extracts features
from a pedestrian’s historical trajectory sequence. However, this
method only takes pedestrian trajectory coordinates as network
input, without considering the effect of environmental factors.
Vinyals et al. [31] proposed a network structure that combines
CNN and LSTM for image description task. Deep learning method,
with the capability of spatial–temporal feature learning, provides
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a promising solution for the challenges of surgical path planning.
Our proposed surgical GAN differs mainly from Social GAN [30]
and CNN-LSTM networks [31] by constructing the generator and
discriminator of GAN with combined CNN-LSTM networks.

3. Materials and Methods

3.1. Problem Definition

3.1.1. Research goal
As shown in Fig. 1, the purpose of this work is to plan in real

time a feasible future local path of guidewire tip in ES by estimat-
ing the current medical image (defined as surgical state image) and
the historical trajectory of the guidewire tip.

The input surgical state image at time t is defined as Xt
img . The

input historical trajectory is defined as Xt
tr . It consists of the

guidewire tip positions at n times before the current time t. So,
there is Xt

tr ¼ ðXt�nþ1
p ;Xt�nþ2

p ; � � � ;Xt
pÞ. Xt

p ¼ xt ; ytð Þ is the guidewire
tip position in image coordinate at time t. We denote the planned

future local path as Y ^t
path ¼ ðY ^tþ1

p ;Y ^tþ2
p ; � � � ;Y ^tþn

p Þ. Y ^tþ1
p ¼

ðx^tþ1; y^tþ1Þ is the guidewire tip position inside the planned local
surgical path at time t + 1. The local path of ground truth collected
from the surgeon’s demonstration is denoted as Y.

3.1.2. Assumptions and conditions
aaa

(1) As shown in Fig. 1 (a), for training sample collection and
algorithm test, the simulated task is set to be delivering the
guidewire tip from the aortic arch into the left common carotid
artery (LCCA), left subclavian artery (LSCA), right common car-
otid artery (RCCA), or brachiocephalic trunk and so on. It is a
necessary and relative difficult procedure in most of the
intracranial endovascular surgeries including angiography diag-
nosis and treatment.
(2) The global aortic arch contours is known, which can be
obtained by aortic arch angiography in actual ES. As shown in
Fig. 1 (b), the starting point and the target point for the guide-
wire insertion tasks are manually set. The vascular center line
Fig. 1. Schematic of guidewire-tip local path planning: (a) an aortic arch
angiography with manually set start and target points of the guidewire insertion
task, (b) extracted vascular contours, center line from the start point to the target
point and final actual path of guidewire insertion, (c) local images with historical
path and planned local future path.
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from the starting point to the target point is extracted. In each
local image, the contours of the vascular and guidewire can be
obtained in real time, and the vascular center line is used to rep-
resent the guidewire insertion task, as shown in Fig. 1 (c).
(3) The phrase of ”path planning” in this work has some differ-
ences with typical path planning, especially for the idea of with
no collisions. As shown in Fig. 1 (b) and (c), contacts between
the guidewire and the vascular wall is even always necessary
in many clinical cases, where the interventional radiologists
delivers the guidewire tip pass the vascular bifurcation and into
the target branch by making use of those contacts. Collisions
between the planned guidewire path and the vascular contours
is not absolutely unallowed in ES.
(4) Although the completeness of 3D anatomical images is bet-
ter, 2D-DSA images with good real-time performance are still
the gold standard for ES operation decision-making. To match
current surgical patterns and habits, 2D images are used here
as input for surgical path planning.
(5) Although fluoroscopy is a 2D technique, trajectory points of
the guidewire tip in the 2D surgical state image can reflect both
of the rotational and axial actions due to the guidewire tip is of
J-shape. When the guidewire is rotated, pushed or pulled, the
position of the guidewire tip will change. So, by taking historical
trajectory points of the guidewire tip and the surgical state
image as input, both of the rotational action and the axial action
can be taken into account for trajectory planning.
(6) Due to more complex models are expensive and it is too
early to test on actual tissues, manually designed vascular mod-
els (according to the medically used training model and human
aortic arch anatomy) are used for training sample collection and
algorithm test as detailedly shown in Section 3.3.

3.2. Proposed Framework

3.2.1. Image preprocessing
The proposed framework for guidewire path planning is shown

in Fig. 2. The surgical state image at each time is preprocessed
before input to the surgical GAN as follows:

1) First, in order to avoid the interference of other human tis-
sues information in DSA image, the contours of the vessel and
the guidewire are extracted using Qin’s VRBC-t-TNN vascular
edge detection method [32], which is an effective method for
accurately recovering vessel structures from the X-ray angiog-
raphy images of moving organs or tissues. Although the vascu-
lar model used in this paper is rigid and has no motion and
deformation, VRBC-t-TNN vascular edge detection method can
be still used in further animal or in–human research, where
the vessel is deformable. In addition, data collection experi-
ments and user experiments are respectively conducted under
camera and fluoroscopy in this work. Due to the adaptive
thresholding method is adopted in Qin’s VRBC-t-TNN vascular
edge detection algorithm [32], it is capable of preprocessing
the camera images and fluoroscopy images.
2) Third, the extracted vascular contour is thinned into the vas-
cular center line by using Zhang’s fast parallel thinning algo-
rithm [33].
3) Fourth, the surgical environment near the guidewire tip plays
the most important role during surgeons’ operation decision-
making. So, the local surgical state image with a certain size
is cropped by taking the guidewire tip as the center. The guide-
wire tip position is obtained in real-time by finding the end-
point of the thinned guidewire line. Relative to the whole
surgical state image, the local surgical state image can be con-
sidered as an attention mechanism. Also, the sample diversity
can be increased by using the local surgical state image [14].



Fig. 2. Architecture of the proposed framework for guidewire path planning. In Preprocess Module, vessel and guidewire contours, as well as the historical tool trajectory, are
extracted from the surgical state image sequence (DSA images). Then, the preprocessed information is input to surgical GAN. A new Generator is the main innovation of
surgical GAN, which can extract and fuse the spatial and temporal features in the unstructured surgical environment. It is enabled by combining CNN and LSTM within the
encoder, which is followed by a Fusion Module. The Decoder generates future local surgical path in real time.
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The preprocessed local surgical state image and the historical
guidewire tip positions sequence are then input to surgical GAN.
Surgical GAN extracts the spatial features of medical image and
temporal features of historical guidewire trajectory, and then pre-
dicts the future surgical path.
3.2.2. Surgical GAN
Conditional Generative Adversarial Networks (CGAN) was

introduced as an extension of GAN [34]. GAN has demonstrated
that it can produce realistic samples from randomly distributed
input based on adversarial training. However, in an unconditional
generative model, there is no control on the models of the data
being generated. It means that we cannot obtain desired data cor-
responding to certain conditions. By conditioning the model on
extra information g. CGAN is effective to direct the data generation
process. gcould be any kind of auxiliary information, such as class
labels or data from other modalities.

Like GAN, CGAN also consists of two adversarial models: a Gen-
erator G takes the prior noise pz zð Þ and gas input and outputs a
generated sample G zjgð Þ. A Discriminator D takes a generated sam-
ple or a real one as input x and outputs a single scalar D x gjð Þ. D x gjð Þ
represents the possibility that x is a real sample rather than a gen-
erated one. The Generator and Discriminator play the min–max
game with a value function V D;Gð Þ and can finally reach equilib-
rium [34], where both Generator and Discriminator achieve the
optimal capability.
Fig. 3. Architecture of the generator of surgical GAN. A MLP is used to fuse the
extracted spatial and features from surgical state image and historical tool
trajectory.
min
G

max
D

V D;Gð Þ ¼ Ex�pdata xð Þ logD x gjð Þ½ �
þ Ez�pz zð Þ log 1� D G z gjð Þð Þð Þ½ � ð1Þ

Our work is primarily inspired by the recent Social GAN frame-
work for pedestrian trajectory prediction[30], which is essentially
a kind of CGAN. The historical trajectory of each person in a scene
is taken as conditional information. It was demonstrated that
Social GAN can successfully generate socially acceptable trajecto-
ries for every pedestrian in the scene. Surrounding state informa-
tion was not considered in Social GAN, because LSTM was not
capable of modeling 2D image data. However, surgical state infor-
mation in the medical image is crucial for surgical path planning.
To solve this problem, we propose surgical GAN as shown in
Fig. 2, which combines CNN and LSTM to construct the Generator
and Discriminator. The Generator used the surgical state image
and historical tool trajectory as the conditional information and
generate the future tool path as real as possible. The Discriminator
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is designed to distinguish the generated tool path from a real one
in the training sample. The surgical GAN will be illustrated in detail
as follows.

3.2.3. Generator of Surgical GAN
The Generator of surgical GAN adopts encoder-decoder struc-

ture as shown in Fig. 3. The encoder is used for encoding the sur-
gical state image and historical tool trajectory into intermediate
features. Then, the intermediate features are decoded by the deco-
der to generate the future surgical path of the guidewire tip. In
order to combine the feature outputs of the CNN and LSTM, a
fusion module is introduced between the encoder and decoder.

3.2.4. Encoder of the Generator
First, the surgeon makes decisions on the surgical path mainly

according to the morphological characteristics and spatial relation-
ship of vascular contour and the guidewire. So, CNN is applied to
extract the features in the surgical state image. The lth convolu-
tional layer can be given by

ht
l ¼ r ht

l�1Wl þ bl

� �
ð2Þ

where ht
l is the output feature map of the lth convolutional layer

and ht
l�1 is the output of the previous layer, ht

l�1jl¼1 ¼ Xt
pr img ;Wl rep-

resents the kernels of the lth convolutional layer, bl is the bias term;
r �ð Þ is the nonlinear activation function, and ReLU is used.
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The final feature output of the CNN is the output of the last fully
connected layer as given in

ht
f ¼ r Wfh

t
f�1 þ bf

� �
ð3Þ

where ht
f and ht

f�1 are respectively the output feature vector and
input feature vector of the fth fully connected layer, Wf is the
weight matrix, bf is the bias term.

Second, surgical path planning can be considered as a sequen-
tial problem. The surgeon adopts certain strategies to deliver the
guidewire tip for a given surgical task. The surgical path of the
guidewire tip can be regarded as an explicit representation of the
surgical strategy with context. In this paper, we use LSTM to iden-
tify the sequential character of the tool’s historical trajectory and
then predict its future surgical path. It should be noted that
multi-LSTMs could also be used when planning surgical paths for
more than one tools.

Third, rotation-and-translation invariance of the sequential
character of the guidewire tip trajectory needs to be considered.
To increase sample diversity, data augmentation is performed by
rotating and translating the images. It is obvious that the spatial
relationship between the trajectory and vascular contour is inde-
pendent of the image’s rotation and translation. On the contrary,
the absolute positions of trajectory points change in such condi-
tions, which might cause gradient disappearance and explosion
during network training. So, we normalize the absolute coordi-
nates of the trajectory points by calculating the position difference
between adjacent points. The sequence of the position differences
of n trajectory points at time t is defined as DXt

tr , which can be
expressed as:

DXt
tr ¼ DXt�1

tr ;DXt�2
tr ; � � � ;DXt�n

tr

� �
ð4Þ

DXt�i
tr ¼ xt�i � xt�i�1; yt�i � yt�i�1

� � ð5Þ
It should be noted that the position difference of trajectory

points only consists of two numerical values, i.e. difference in hor-
izontal and vertical coordinates. For the network weights balance,
a single layer MLP is used for embedding the position differences
into a high-dimensional vector et�i

tr e as given in:

et�i
tr e ¼ /1 Dxt�i

tr ;Dyt�i
tr ;Wemb G

� � ð6Þ
where /1 �ð Þ represents the single layer MLP using ReLU as the acti-
vation function, Wemb G is the weight of the MLP.

Then, the sequence of embedded vectors of n trajectory points
ettr is used as the input of encoder LSTM of the Generator as
expressed in:

ot�i
eG ¼ LSTMeG ht�i�1

lstm e; e
t�i�1
tr ;Ct�i�1

lstm e;WeG

� �
ð7Þ

where ot�i
eG ;h

t�i�1
lstm e; C

t�i�1
lstm e;WeG are respectively the output feature

vector, hidden state, cell state and weights of encoder LSTM of the
Generator at time t-i.

3.2.5. Fusion module
In order to combine the extracted features of the surgical

state image and historical guidewire tip trajectory, we introduce
a fusion module between the encoder and the decoder. The out-
put feature map of the CNN is flattened into a one-dimensional
vector, and then concatenated with the output feature vector of
decoder LSTM of the Generator. Then, the concatenated vector is
input to an MLP to non-linearly fuse with the features, as given
in

etfus G ¼ /2 ht
f ; o

t
eG

� �
;Wfus G

� �
ð8Þ
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where /2 �ð Þ represents the MLP in fusion module using ReLU as the
activation function,Wfus G is the weight of the MLP in fusion module
of the Generator.

3.2.6. Decoder of the Generator
The aim of the decoder is to generate the future surgical path by

taking the fused feature as input. LSTM is used to construct the

decoder, and the position difference DY ^tþj
path between future surgi-

cal path points at time t + j can be calculated by

DY ^tþj
path ¼ LSTMdGðhtþj�1

lstm dG; e
tþj�1
fus ;Ctþj�1

lstm dG;WdGÞ ð9Þ

where htþj�1
lstm dG;C

tþj�1
lstm dG;WdG are respectively the hidden state, cell

state and weights of decoder LSTM at time t + j-1.

The guidewire tip position Y ^tþj
path in the future surgical path at

each time step can be obtained by adding iteratively the generated

position differences sequence DY ^tþj to the current guidewire tip
position, as given in

Y ^tþj
path ¼ Y ^tþj�1

path þ DY ^tþj
path ð10Þ
3.2.7. Discriminator of surgical GAN
The Discriminator is also constructed by encoder-decoder struc-

ture. LSTM is used to construct the Discriminator. It takes the posi-
tion difference sequence of a planned surgical path or a sample as
input. Kevin et al. [35] demonstrated that weights sharing between
the Generator and Discriminator is benificial in improving the
training efficiency. So, the encoder LSTM of the Generator shares
weights with the encoder LSTM of the Generator. The output fea-
ture is then combined with the feature output of CNN in Generator
by a fusion module. The feature output of CNN from surgical state
image plays the role of additional information g of the Discrimina-
tor. LSTM is then used as a decoder. It takes the combined feature
as input and outputs the possibility of a surgical path is a real sam-
ple or generated one. It should be pointed out that the decoder
LSTM in Discriminator and Generator do not share weights. In
addition, the position difference at each time is also embedded into

a high-dimensional vector etþj
tr dsc using a single layer MLP.

The embedded vector etþj
tr dsc is then input into the encoder LSTM

of the Discriminator as given by:

htþj
eD ¼ LSTMeD htþj�1

eD ; etþj�1
tr dsc ;C

tþj�1
eD ;WeD

� �
ð11Þ

where htþj�1
eD ;Ctþj�1

eD ;WeD are respectively the hidden state, cell state
and weights of the decoder LSTM of the Discriminator at time t + j-1.

Then, a fusion module is used for embedding the output feature
map of the Generator CNN and output feature vector of the encoder
LSTM in Descriminator, which can be expressed as:

etþj
fus D ¼ /4 ht

f ; h
tþj
eD

� �
;Wfsu D

� �
ð12Þ

where /4 �ð Þ represents the MLP in fusion module using ReLU as the
activation function,Wfus D is the weight of the MLP in fusion module
of the Descriminator.

Then, the output of fusion module is input to the decoder LSTM
of Discriminator, which can be expressed by:

htþj
dD ¼ LSTMdD htþj�1

dD ; etþj�1
fus D ;C

tþj�1
dD ;WdD

� �
ð13Þ

otdsc ¼ htþn
dD ð14Þ

where htþj�1
dD ;Ctþj�1

dD ;WdD are respectively the hidden state, cell state
and weights of the decoder LSTM of the Discriminator at time t + j-1,
otdsc is the final output of the Discriminator at time t + n (n = 8).
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It should be noted that the Discriminator only works during
network training but not path planning procedure. During path
planning application, the final output of surgical GAN is calculated
by iteratively adding the position differences generated by the
Generator to the current guidewire tip position.
3.3. Data Collection and Network Training

Due to ethical limitations, it is impractical to collect large-scale
training data from clinics. So, we develop a laboratory platform for
training data collection as shown in Fig. A.1 and A.2. The main
components of the laboratory platform for training data collection
include the following: designed vascular models and a loach guide-
wire (RF*GA35153M, Terumo Corporation, JP, with a diameter of
0.9 mm, length of 150 mm, and a J-shape tip of 3 mm length) used
for simulated guidewire insertion, an industrial camera(with
1280*960 pixels, 15 fps, a wide-angle lens of 145� FOV and
2.8 mm focal length) used for capturing the image of the transpar-
ent vascular model and the guidewire, a set of LED and light shield
to provide a stable photoenvironment. Considering sample diver-
sity, a sufficient number of vascular models with different shapes
are needed for data collection. With minor adjustments according
to the actual anatomic structure of human vessels, we design 10
vascular models with different vascular radius, bending degrees,
including angles and relative positions between vascular bifurca-
tions, as shown in Fig. A.1. The set angles, diameters etc are realis-
tic and within the normal range of human vascular anatomical
morphology parameters. It should be noted that because deform-
able vascular models are costly, rigid vascular models are used in
this work for preliminary verification of the proposed method.

The simulated operation task is set to be delivering the guide-
wire tip from the aortic arch into the left common carotid artery
(LCCA), left subclavian artery (LSCA), right common carotid artery
(RCCA), or brachiocephalic trunk and so on. On the one hand, the
given task is necessary for most of the intracranial endovascular
surgeries of angiography diagnosis and treatment. During intracra-
nial endovascular surgeries, the path from aortic arch to those
three branches is the only way to get to the target in common car-
otid artery, vertebral artery, and further branches. On the other
hand, in clinical practice, the given task is a relatively difficult
and time-consuming stage in the whole process of delivering the
guidewire tip from the femoral artery to the intracranial nidus.

Ten surgeons, aged 30–50, are invited to implement the tasks
using a medical guidewire (RF*GA35153M, Terumo Corporation,
JP) for sample collection. The simulated operation in each vascular
branch of each model is repeated 5 times by each surgeon. If the
surgeon missed the target, he/she was asked to repeat the action
in order to exclude wrong operation and sample data. There are
4 to 6 branches that can be effectively inserted in each of the 10
vascular models. One simulated operation attempt is considered
as a demonstration. The image of the vessels and the guidewire
at every time of the demonstrations is recorded by the camera,
which is defined as the surgical state image. The surgical environ-
ment near the guidewire tip is important for surgeons’ operation
decision-making, so the local surgical state image with a certain
size is cropped from the whole surgical state image by taking the
guidewire tip as the center. Each sample consists of a preprocessed
local surgical state image and a segment of historical guidewire tip
trajectory as the network input, as well as a segment of the future
surgical path as the label. Finally, 2:5� 103 demonstrations (5
demonstrations/branch/surgeon � 5 branches/model � 10 models
� 10 surgeons) are collected and the sample datasets containing
3:5� 105 samples (140 samples/demonstration � 2:5� 103

demonstrations) are constructed.
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We implement the proposed surgical GAN based on Pytorch and
a workstation (with an NVIDA GTX 1080Ti GPU). 3:4� 105 col-
lected samples are used as the training set, while 1� 104 samples
are used as the validation set. 1� 104 samples collected with an
endovascular evaluator (EVE) is used as the test set. Adam opti-
mizer is used for optimization. The batch-size, Discriminator learn-
ing rate and Generator learning rate are respectively 64, 5� 10�5

and 8� 10�5. During tests, the calculating speed is about 20 fps,
which meets the requirement of real-time path planning in
operation.

4. Experiments and Results

In this section, experiments are conducted to evaluate the capa-
bility of the proposed surgical GAN framework for guidewire path
planning in ES. Firstly, comparative tests are conducted among the
fully surgical GAN, several baseline networks and nonrigid regis-
tration method [23]. Secondly, user experiments are conducted
to evaluate the guidance effect of the planned surgical path on sur-
geon’s operation. All metrics are assessed using the non-
parametric Kruskal–Wallis H significance test in IBM SPSS Statis-
tics 24 (a value of p < 0:05 is considered statistically significant).

4.1. Effect of CNN achitecture and path planning length

On one hand, different CNN architectures can theoretically be
used in the proposed surgical GAN framework. So, the effects of
different CNN on path planning performance should be tested.
Using the same training and test data, path planning tests are con-
ducted by integrating different typical CNNs including VGG13,
DenseNet121, Inception V3, and ResNet50.

On the other hand, since context features of historical tool path
are fused for path planning, the influence of path planning length n
on path planning performance needs to be investigated. Experi-
ments are conducted by setting n from 4 to 16. It should be noted
that path planning length is equal to historical tool path length,
because the encoder LSTM of Generator share weights with that
of Discriminator.

For quantitative evaluation, six evaluating metrics are defined
as follows. The average diameter of the vessel for one guidewire
insertion demonstration diavessel is defined as the twice of the aver-
age distance between the points in the vessel central line and the
closest points in the vessel contour line, which can be given as:

diavessel ¼
Xm
1

2discent�cont=m ð15Þ

where discent�cont is the distance between a point in the vessel cen-
tral line and the closest point in the vascular contour line, m is
the number of the points in the vessel center line from the start
point to the target point in one guidewire insertion demonstration.

(1) Average Deviation (AD): it donates the average deviation
between the points of the real path and the planned path. It
reflects the overall deviation. Then, the Relative Average Devia-
tion (RAD) is defined as the ratio of AD and diavessel.
(2) First Point Deviation (FPD): it is the deviation between the
first point in the real path and that in the planned path. For
dynamic path planning, the first path point nearest to the
guidewire tip plays an important role. The Relative First Point
Deviation (RFPD) is defined as the ratio of FPD and diavessel.
(3) Last Point Deviation (LPD): it defines the deviation between
the last point of the real path and that of the planned path. It
reflects the final accuracy of the prediction. The Relative Last
Point Deviation (RLPD) is defined as the ratio of LPD and diavessel.
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The results are shown in Table 1. It can be seen that AD, RAD,
FPD, RFPD, LPD and RLPD are almost at the same level despite dif-
ferent CNN architectures. It indicates that, the CNN within the pro-
posed surgical GAN can all extract the features in the surgical state
images. In addition, LPD and RLPD get the minimum value of
1.22 mm and 5.96% with DensNet121. AD, RAD, FPD and RFPD
achieve the minimum values of 1.16 mm, 5.67%, 0.48 mm and
2.35%with Inception V3. So, Inception V3 is selected for the subse-
quent experiments.

The results of tests with different path planning lengths are
shown in Table 2. It can be found that FPD and RFPD reduce rapidly
from the maximum value of 0.55 mm and 2.69% to 0.40 mm and
1.95% when n increases from 4 to 8. Then, FPD and RFPD conver-
gence slowly to the minimum value of 0.39 mm and 1.91% when
n gets to 12. The reason might be that when n is 12, the network
obtains the most context information of historical tool path. But,
when n gets to 16, the part of context information that is too far
from current time offers little help for future path planning. LPD
and RLPD achieve the minimum values when n is 8. The cause
might be that the remote predicted path point has little relevance
with the current position, although more context information is
beneficial for future path planning. AD and RAD also achieve the
minimum value when n is 8. So, n is set to be 8 for the subsequent
experiments.

4.2. Methods Comparison

Social GAN [30] with a single LSTM is defined here as GAN-
LSTM. A network composed of inceptionV3 and LSTM is trained
via supervised learning but not adversarial learning. It is defined
as Inception V3-LTSM [31]. GAN-LSTM and InceptionV3-LTSM are
taken as the baseline networks. The effect of surgical environment
information and adversarial learning on surgical path planning can
be analyzed via comparison between fully surgical GAN, GAN-
LSTM and InceptionV3-LTSM. The effect of surgical environment
information is further evaluated by comarison between fully surgi-
cal GAN and the non-rigid registration method [23]. The non-rigid
registration method is implemented using Matlab with the col-
lected training sample data in this work.

The quantitative comparison results are shown in Table 3. First,
it can be seen that AD, RAD, FPD, RFPD, LPD and RLPD of full surgi-
Table 2
Effect of different path planning lengths.

Metrics Surgical GAN_4 Surgical GAN_6 Surgical GAN_8

AD(mm) 1.27 1.16 1.02
RAD 7.48% 6.83% 6.01%

FPD(mm) 0.55 0.48 0.40
RFPD 3.24% 2.83% 2.36%

LPD(mm) 1.65 1.53 1.24
RLPD 9.72% 9.01% 7.30%

* Inception V3 are selected in these tests. Surgical GAN_n denotes the network with pat

Table 1
Effect of different CNN architectures.

Metrics Surgical Surgical Surgical Surgical
GAN VGG GAN DenseNet GAN Inception GAN ResNet

AD(mm) 1.23 1.18 1.16 1.20
RAD 7.24% 6.95% 6.83% 7.07%

FPD(mm) 0.49 0.50 0.48 0.52
RFPD 2.89% 2.94% 2.83% 3.06%

LPD(mm) 1.35 1.22 1.24 1.48
RLPD 7.95% 7.18% 7.30% 8.71%

* Path planning length n is 6 in the tests with different CNN architectures.
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cal GAN are obviously lower (up to 59.49%) than those of GAN-
LSTM. It indicates that the surgical state image features are suc-
cessfully recognized. Because of the lack of environmental infor-
mation, GAN-LSTM shows lower accuracy of path planning. AD,
RAD, FPD, RFPD, LPD and RLPD of full surgical GAN are overall
lower than those of Inception V3-LSTM by up to 69.78%. It indi-
cates that the generative adversarial training method is beneficial
for improving the accuracy of path planning. Second, because the
non-rigid registration method just generates a fixed whole path
from start point to the target, only AD and RAD are meaningful
for comparison. AD and RAD of full surgical GAN are 72.94% lower
than those of the non-rigid registration method. Third, the size of
the surgical state image is 200 � 200 pixels and 45 � 45 mm.
AD, RAD, FPD, RFPD, LPD and RLPD of the proposed surgical GAN
are respectively 1.02 mm, 4.99%, 0.40 mm, 1.95%, 1.24 mm and
6.06%. The path planning accuracy is at the same scale of the oper-
ating accuracy of our previous ES robot (with average error of
0.18 mm and maximal error of 1.4 mm), which has successfully
assisted a interventional radiologist to implement bilateral carotid
angiographies in human[36]. The operation task for demonstration
and algorithm test in this work, delivering the guidewire tip from
the aortic arch into the left common carotid artery (LCCA), left sub-
clavian artery (LSCA), right common carotid artery (RCCA), or bra-
chiocephalic trunk and so on, is a necessary and difficult procedure
during bilateral carotid angiographies. It indicates that the pro-
posed surgical GAN path planning method can be used for operat-
ing guidance.

The results of guidewire path planning with surgical GAN in
two vascular branches are shown in Fig. 4. It should be noted that
the ground truth path is here defined as a recorded guidewire tip
path in a successful demonstration of an expert surgeon. The rea-
son is that there is currently no model that can calculate an abso-
lutely optimal path as the ground truth path. This research work
just aims to develop a model that can plan an effective path by
learning the features contained in experienced surgeons’ demon-
stration data. The skills of experienced surgeons are considered
to be better than that of novice surgeons, which can bepartly be
represented by the operation path. So, to evaluate the proposed
path planning method, it is a rational and currently good way by
taking the demonstration of the expert surgeon as the ground truth
path. It can be seen that the planned path matches well with the
ground truth, although there is a certain deviation between them.
The reason for the deviation is partly that the variance of the path
point distrubution bteween different training samples. Guidewire’s
deformation caused by operation resistance results in a variation of
its forward velocity. This variation leads to small or large position
differences between planned path points under certain probability.
In addition, this deviation is larger near the vascular branches. The
reason might be that the shape complexity of the vascular
branches decreases the feature recognition accuracy of the net-
work. But the deviation can reduce again after the guidewire tip
passes through the branches as shown in Fig. 4.

For comparing analysis between the proposed method and the
non-rigid registration method, non-rigid registration is used to
Surgical GAN_10 Surgical GAN_12 Surgical GAN_16

1.12 1.32 1.64
6.59% 7.77% 9.66%
0.45 0.39 0.46
2.65% 2.30% 2.71%
1.60 1.88 2.57
9.42% 11.07% 15.13%

h planning length of n.



Table 3
Results of Method Comparison.

Metrics GAN-LSTM[30] Inception V3-LSTM[31] Full surgical GAN Non-rigid registration[23]

AD(mm)= RAD 2.07= 12.19% (55.60% #*) 2.49= 14.66% (63.09% #) 1.02= 6.01% 3.77 = 22.20% (72.94% #)
FPD(mm)= RFPD 0.84= 4.95% (52.15% #) 0.74= 4.36% (46.20% #) 0.40= 2.36% —
LPD(mm)= RLPD 3.06= 18.02% (59.49% #) 4.10= 24.14% (69.78% #) 1.24= 7.30% —

* # indicates that the metric value of Full surgical GAN is lower than that of other methods.

Fig. 4. Results of surgical path planning with surgical GAN in: (a) vascular branch I, (b) vascular branch II. The ground truth (a recorded guidewire tip path in a successful
demonstration from an expert surgeon) are marked in yellow. The planned path are marked in red.
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obtain a warping function to map guidewire tip paths from a sam-
ple vascular model into an other anatomically similar but shape/
scale/orientation different target vascular model. The results of
guidewire path planning with the non-rigid registration method
for two vascular branches in the target model are shown in
Fig. 5. The legend for the red line: ”ground truth in the sample vas-
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cular model” means a recorded guidewire tip path within the sam-
ple vascular model in a successful demonstration of an expert
surgeon. The legend for the blue line: ”ground truth in target vas-
cular model” denotes the recorded guidewire tip path within the
target vascular model in a successful demonstration of an expert
surgeon. It can be seen that the overall trend of the planned path



Fig. 5. Results of surgical path planning with the non-rigid registration method in:
(a) vascular branch I, (c) to (f) are large versions of several different local images at
points c to d in (a), (b) vascular branch II, (g) to (j) are large versions of several
different local images at points g to j in (b).
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and the ground truth in the target vascular model are similar. But
the deviation between the planned path and the ground truth in
the target vascular model is relatively large. As shown in Fig. 5
(h), the planned path even shows a similar trend with the ground
truth in the sample vascular model but a different trend with the
ground truth. The planned path in Fig. 5 (d), (f) and (g) are partially
out of the vascular contour. Comparison between Fig.4 and Fig.3
shows that the planned path with the proposed surgical GAN
matches better with the expert surgeon’s operating path than that
with the non-rigid registration method.
4.3. User experiment

In this section, we further evaluate the guidance effect of the
planned path on the surgeon’s operation through objective and
subjective metrics. We develop a simulated clinical scenario in
an operating room as shown in Fig.5. The surgeon remotely manip-
ulates the guidewire via a master-follower ES robot. It should be
noted that The follower robot does not automatically navigate
to the target, but manipulates the guidewire under the control
of the surgeon (via the master controller). During the experiments,
the surgeon manipulates the operating handle of the master con-
troller. The sensing device of the master controller detects the axial
and rotational motion of the operating handle, which represents
the operating action of the surgeon. At the same time, the detected
action information is sent to the controller of the follower robot. By
accurately reproducing the surgeons action, the follower robot
manipulates the guidewire to deliver the guidewire tip towards
the target point. An endovascular evaluator (EVE) is used to pro-
vide a relatively realistic surgical environment. It is remolded
according to the actual vascular anatomy from a woman’s 3D CT
data and made of silicon by 3D printing process. It means that
the anatomy of the silicon phantom is realistic. In addition, such
a silicon phantom has been used as an endovascular evaluator
for skills training of interventional radiologist. So, it is practical
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and reasonable to use the silicon phantom for preliminary verifica-
tion of the proposed method in this work. With contrast agent
injection, the contour of the vessels is distinct from the X-ray
image before subtraction, as shown in Fig.5 (c). Without contrast
agent injection, the contour of the guidewire is distinct from the
X-ray image after subtraction, as shown in Fig.5 (d). At each time
step, the preprocessed image is used as input of the surgical
GAN. We visualize the planned surgical path and match it with
the surgical state image, which is used as the interface to the oper-
ator (a GIF is given in the Supplementary material as GIF. A.2 to
show the path guidance procedure).

Three novice female and seven novice male participants, ages
25–35, are invited to implement the guidewire insertion task.
The operators are asked to perform guidewire insertion taks simi-
lar to those for sample collection in Section 2. The tasks are per-
formed in two different modes: guidance and free. Each
participant performs the task for 5 times in free mode, where no
path guidance is provided. After ten days, the participants are con-
sidered to be unfamiliar again to the vascular model. Then, each
participant performs the task for 5 times in guidance mode, where
path guidance is provided. Fig. 6.

The qualitative results are shown in Fig. 7. According to the
planned path in Fig. 7 (a) and (b), the guidewire tip should be
pulled back in the aortic arch towards LSCA, which is reasonable.
As shown in Fig. 7 (b), the smoothness of the planned path is
decreased. It might be caused by the complex shape near the
entrance of the Innominate artery. According to the planned path
in Fig. 7 (c) and (d), the guidewire tip should be rotated and pushed
forward. It is rational because the guidewire tip is near the
entrance of LSCA but its orientation deviates from the entrance.
From Fig. 7 (e) and (f), the guidewire tip is pulled by an overlarge
distance and passes the entrance of LSCA. Then, as shown in Fig. 7
(g) and (h), the operator tries again and pushes the guidewire tip
towards the entrance of LSCA. During the procedure from Fig. 7
(e) to (h), the planned path remains oriented to LSCA. It provides
the right guidance to the operator. In Fig. 7 (i) to (l), the guidewire
tip is inserted into LSCA and gradually gets to the target. The
results indicate that the trained surgical GAN has the ability of
planning the acceptable local surgical path in real time.

For quantitatively evaluating the effect of path guidance on sur-
geons’ operation, following objective metrics are defined:

(1) OD(s): Operation duration for task completion. The exten-
sion of OD might aggravate X-ray radiation damage to both
the patient and surgeon [37].
(2) TD(m): Travel distance of the guidewire tip. Larger TD indi-
cates more touch between guidewire and the vessel and then
increased risk of vascular damage.
(3) OA: Operation attempts for task completion. The surgeon
always attempts several times to pass the guidewire tip
through some complex vascular region. Larger OA also increases
the risk of vascular damage.
[4] TT(�): Trajectory tortuosity of the guidewire tip, which rep-
resents the smoothness of the guidewire insertion. Smaller TT
represents a better operation quality. The trajectory tortuosity
near point pi can be represented by the including angle gi

between line pi�1pi and line pipiþ1. gi can be calculated by cosine
law. Then, TT can be considered as the average value of gi.

The objective evaluation results are shown in Table 4 and Fig. 8.
It can be seen that OD, TD, OA and TT in guidance mode are
improved compared with those in free mode. In addition, the
p value for the four metrics are all smaller than 0.05. It indicates
that the effect of path guidance on the operators’ operation is
significant. As shown in Fig. 8, the smoothness of the guidewire



Fig. 6. Experimental platform in an operation room: (a) EVE and follower robot, (b) A surgeon manipulating the master controller, (c) Enlarged view of EVE, and (d) Vascular
contour in the X-ray image before subtraction.

Fig. 7. Guidewire tip path planning in an user experiment. As the guidewire tip moves from the start point in the aortic arch to the target in LSCA, the algorithm always plans
reasonable surgical path. It can provide visual guidance for novice surgeons, who are not familiar with the operation.

Table 4
The Quantitative Results of the User Experiment.

Metrics Operation mode Operator number p value

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

OD(s) Free 51.2 66.4 53.6 60.1 52.2 62.9 57.7 64.8 51.1 54.3 0.006 <0.05
Guidance 43.8 46.3 40.2 52.4 47.6 52.2 53.1 56.4 43.7 43.9

TD(m) Free 89.8 105.6 108.3 126.1 90.3 119.3 109.1 122.5 88.4 90.2 0.002 <0.05
Guidance 74.8 80.6 88.4 79.2 73.9 76.2 79.8 77.2 76.1 75.4

OA Free 2 3 3 4 2 4 3 4 2 2 0.005 <0.05
Guidance 1 1 2 1 1 1 2 2 1 1

TT(�) Free 161.3 161.7 161.4 160.8 162.4 163.1 162.6 163.6 162.8 161.6 0.002 <0.05
Guidance 168.1 163.9 166.3 162.5 167.7 163.3 161.9 164.1 164.9 166.4
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Fig. 8. Results between guidance mode and free mode of two operators’ tests. (a) (c) (e) (g) are the guidewire tip trajectories, (b) (d) (f) (h) are operators action detected by the
maser controller. The axial motion represents the push (increase) and pull (decrease) action. The rotational motion represents the clockwise (increase) and anticlockwise
(decrease) rotational action.
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tip trajectories of the two operators are both improved in the guid-
ance mode. Fig. 8 also shows the operator’s action detected by the
master controller. The comparative results between Fig. 8 (b) and
(d) with Fig. 8 (f) and (h) show that OA is reduced in the guidance
mode. It indicates that the operation gains more fluency under the
guidance of the planned path. Overall, the objective evaluation
results demonstrate that the guidance of the planned path signifi-
cantly improved the operator’s operations.

For subjective assessment, the experimental protocol uses a
seven-level Likert scale [38] to record metrics. The operators are
asked to compare the guidance mode and free mode on a scale
from �3 to + 3 (-3: negative evaluation, +3: positive evaluation).
The results are listed in Table 5. The majority of the users prefer
the guidance mode over the free mode. The users feel more in con-
trol with guidance enabled, giving them a safer feeling. The visual
guidance of the real-time planned path is evaluated as useful by
the users. In addition, the p value of the significance test is smaller
than 0.05. It indicates an overall better task performance with the
guidance of the real-time planned surgical path.
5. Discussion

We present a surgical GAN framework for path planning of the
passive flexible guidewire in ES. It directly takes the surgical state
image and historical tool trajectory as input and outputs local tool
path in real time. Both the unstructured surgical environment and
unpredictable deformation of passive flexible tools rose prohibitive
challenge for path planning by directly using explicit mathematical
models. The proposed method solves this challenge by construct-
ing a novel GAN architecture, of which the Generator and the Dis-
criminator are both constructed by combining CNN and LSTM. In
this way, the proposed surgical GAN has the capability to extract
Table 5
The Qualitative Results of User Experiment [�3, +3].

Metrics (mm) Free mode Guidance mode p value

Performance efficiency �2.05 1.55 0.02 < 0.05
Performance safety �1.5 1.2

Frustration �1.7 1.55
Overall performance �1.45 1.28
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and fuse the spatial features of medical images and temporal fea-
tures of the historical tool trajectory. Fusion of the feature of med-
ical images and historical tool trajectory can achieve a better
representation of surgeons’ operating experience for surgical path
planning, which is indicated by Table 3. Although deep learning-
based path planning method needs large scale of training sample,
transfer learning method can be adopted in the future work to
make use of the clinical samples and the samples collected with
vascular models. In this way, the demanded number of clinical
samples can be reduced.

This work is an important primary step to turn automatic real-
time surgical path planning into clinical practice for ES. It has great
potential to be translated to real-life conditions. Because deform-
able vascular models are costly, we made 10 vascular models for
data collection and algorithm test by sculpting the vascular con-
tours in 10 boards that cast in beeswax. It means that the vascular
models are rigid and con not deform in the experiments. In the
actual vascular system, the guidewire and the vascular contours
can both deform. However, for one hand, the guidewire within
the experimental stand can actually deform when interacting with
the inner walls of the vascular models. For the other hand, the local
images near the guidewire tip are used to represent the surgical
state and input to the network. The local images are obtained in
real time by cropping the region near the guidewire tip with a cer-
tain size. During the guidewire insertion, the scenes in the local
images input to the network are changeable. It means that the
shapes and relationship of the vascular contours and the deform-
able guidewire in the local images are dynamic and changeable.
So, the proposed framework could be translated to real-life condi-
tions with some extension. Firstly, for image preprocessing, we
adopted the VRBC-t-TNN vascular edge detection method devel-
oped by Qin [32] to extract the contours of the vessels and guide-
wire. This algorithm has been demonstrated to be an effective
method for accurately recovering vessel structures from the X-
ray angiography images of moving organs or tissues, which is suit-
able for deformable vessels extraction in real-life conditions. Sec-
ondly, for the proposed surgical GAN, the inputs are
preprocessed image of the contours of the vessels and guidewire.
It means that the structure of the surgical GAN do not need change
when translate to real-life conditions. Finally, it is true that inser-
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tions in deformable vessels are not contained in our training data,
which should be compensated for translate the surgical GAN to
real-life conditions. In the next research work, we will use deform-
able vessels like animal vessels or even human vessel in clinics,
together with C-arm angiography machine, for further sample data
collection. Transfer learning methods will be adopted to make use
of the sample datasets collected in both deformable vessels and
rigid vascular models.

Furthermore, a visual-haptic feedback mechanism can be fur-
ther researched to provide enhanced guidance for the operators.
We have previously investigated magnetorheological fluids (MR)
based haptic interfaces for the master-follower ES robot [4]. Haptic
feedback could be introduced and combined with visual feedback
in the future work. Then a visual-haptic feedback for the operators
could provide better guidance.

In addition, although only a guidewire is preliminarily used for
path planning research in this work, our algorithm could be further
extended to support simultaneous path planning of multiple tools.
It is known that an ES task always needs collaborative operation of
more than one tool (like the guidewire and the catheter) to achieve
better flexibility. We consider that the proposed framework could
be adapted for multiple tools’ path planning, by adding historical
tool paths and future paths of other tools respectively as the input
and output of current network. In our future work, a further frame-
work that transfer well across tools and across tasks would be
studied to achieve broad applicability.

We would like to stress the benefit of the proposed methodol-
ogy and its potential applications in surgeons’ skills training and
ES robotic autonomy. First, the objective results of user experi-
ments demonstrate that the visual guidance of surgical path
improves significantly users’ operation from the point of the met-
rics of OD, TD, OA and TT. Although the planned path of the guide-
wire tip can not be accurately followed by the surgeon, due to the
flexibility and unpredictable deformation of the guidewire body,
the planned path can provide the surgeon with visual guidance,
especially during the training of novice surgeon. Because the path
planning is realized by learning a large amount of demonstrations
of expert surgeons, their experience contained in the demonstra-
tion data is embedded in the planned path. Under the real-time
visual guidance of the planned path, the trainee can adjust their
surgical action in every step to obtain a better operation training.
It is similar to the hand-holding training mode and beneficial for
the training of novice surgeons. In the future work, an assessment
model of the operation trajectory can be developed to provide
improved impact to the trainees. Quantitative assessment could
allow the trainees to better diagnose their skill deficits in real time
compared with expert surgeons. It could enhance the learning effi-
ciency, and reduce the long training period.

Second, automatic path planning lays an important base for
improving the autonomy of current master-follower ES robots. In
our future research, a visual servo control algorithm for
supervised-autonomous robotic insertion will be developed, where
the robot will drive the guidewire tip (through the guidewire end)
to follow the next path point in every servo control cycle, according
to the relationship between the position of the current guidewire
tip and the position of the next path point. Supervised autonomous
robotic suturing surgery has demonstrated its better efficacy,
safety, and access to the best surgical techniques regardless of dif-
ferent human factors [2]. In our previous work [15], a trained con-
volutional neural network (CNN) is directly used for automatic
navigation of basic guide wire insertion tasks in a Y-shaped vascu-
lar model. However, it is hard to assure the reliability of the action
decision in this manner, due to the black-box problem and inexpli-
cability of deep neural networks. The automatically planned path
can provide a media for the surgeon to understand and supervise
the autonomous robotic insertion.
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6. Conclusions

In this paper, we propose a surgical GAN framework for path
planning of passive flexible guidewire in ES, of which the generator
is constructed by combining CNN and LSTM. It has the capability of
unstructured surgical environment perception and passive flexible
tool path planning in ES.

(1) The results of comparison tests between the proposed surgi-
cal GAN, baseline networks and the non-rigid registration
method indicate that the former can realize effective extraction
and fusion of the spatial features in surgical state image and
temporal features in historical tool trajectory. In this way, the
tool path planning accuracy can be significantly improved.
(2) The user experimental results demonstrate that the guid-
ance of real-time planned surgical path significantly improves
the operators’ performance.
(3) The results of this work motivate further studies including:
enhancing the clinical practice of surgical GAN by clinical sam-
ples, quantitatively assessing the trainees’ skill deficits and
improving their training efficiency, and improving autonomy
of ES robots.
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