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Abstract: In this paper, a double closed-loop backstepping controller is designed for 3D trajectory
tracking of a turtle-inspired amphibious spherical robot suffering from problems that include model
uncertainties, environmental disturbances, and unmeasured velocity. The proposed controller scheme
tackles three primary challenges: the differentiation explosion of the traditional backstepping method,
unmeasured velocity, and the consideration of lumped disturbances. Beginning with an outer-loop
backstepping controller, a virtual feedback variable is constructed to simplify the design of the
backstepping controller. Meanwhile, to avoid the problem of differentiation explosion, tracking
differentiators (TDs) are utilized to estimate the differentiation of the desired velocity in an inner-loop
backstepping controller. Moreover, there are some uncertainty disturbances in the task of tracking
the trajectory of a turtle-inspired amphibious spherical robot (TASR), such as the parameters of the
hydrodynamic model and environmental disturbances. A linear extended state observer (LESO) is
designed to estimate and compensate for the lumped disturbances. Furthermore, as the velocity states
of the TASR are unmeasured, the LESO is also utilized to estimate the velocity states in surge, yaw,
and heave degrees. Therefore, the TASR only needs to supply its position and orientation information
for the trajectory tracking task. Note that this paper details both the design process of the proposed
controller and a rigorous theoretical analysis. In addition, numerical simulations are conducted, and
the results demonstrate the feasibility and superiority of the proposed method.

Keywords: turtle-inspired amphibious spherical robot; 3D trajectory tracking; backstepping control;
linear extended state observer; tracking differentiators

1. Introduction

In recent years, with the shortage of land resources, human exploration of the ocean
has intensified. In order to exploit and utilize marine resources more efficiently, many
bio-inspired underwater robots have been developed in countries around the world. For
example, Wang et al. developed a fish-shaped robot called Robcutt II [1]. Alessandro Crespi
put forward a Salamandra Robotica II amphibious robot that is able to swim and walk [2].
A soft robotic fish was designed by Katzschmann [3]. Daniele Costa et al. designed a bionic
autonomous underwater robot based on the fluid shape of fish bodies [4]. Our team has
researched a series of amphibious spherical robots [5,6].
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Generally, research concerning bionic underwater robots emphasizes control in terms
of not only external appearance but also internal motion; control is a basic necessity for
completing tasks. Generally, basic motion control of underwater vehicles requires tracking a
predetermined underwater trajectory. At present, a large number of studies in the literature
focus on the design of trajectory tracking controllers for underwater robots.

With respect to model uncertainty, which is a common problem, a controller indepen-
dent of the model is the best choice; examples include the proportional integral derivative
(PID) controller [7,8], the sliding-mode controller (SMC) [9,10], the neural network con-
troller, and so on [11,12]. PID controllers perform well in tracking trajectory but lack the
ability to reject disturbances. Sliding-mode controllers offer an algorithm for trajectory
tracking that is very popular due not only to its model independence but also its good
anti-interference performance. Elmokadem et al. proposed a terminal sliding-mode con-
troller for AUVs that considered system uncertainty and environmental disturbances [13].
The simulation results showed that the controller was robust under bounded disturbances.
Cui adopted the Lyapunov method to design an integral sliding-mode controller that
successfully solved the problems involved in controlling robots with unknown velocity,
unknown disturbances, and unknown hydrodynamic model parameters [10]. Although the
sliding-mode controller is not sensitive to model parameters, its control quantity exhibits a
high-frequency chattering phenomenon, which is not conducive to the execution of actua-
tors. The neural network algorithm is another commonly utilized algorithm in underwater
trajectory tracking. In [11], the authors proposed an efficient neural network approach with
a single-layer structure for tracking control. Miao et al. designed a novel adaptive neural
network tracking controller by combining dynamic surface control (DSC) and a minimal
learning parameter (MLP) [12]. In addition, a radial basis function neural network was
employed to account for tracking errors. Neural-network-based tracking controllers are
insensitive to the dynamic model of the robot and possess strong adaptability and learning
capabilities. However, due to the changeable nature of the underwater environment, the
training and learning processes are difficult, which leads to poor real-time performance of
the tracking algorithm.

If the kinematic model and hydrodynamic model of an underwater vehicle can be
acquired, we can design a more suitable controller according to the approximate model
parameters to achieve better control effectiveness.

Some algorithms based on models have been researched for trajectory tracking, such
as model predictive control (MPC), backstepping control (BSC), and so on. Zhang et al.
applied MPC to achieve three-dimensional trajectory tracking of an autonomous underwa-
ter vehicle (AUV). In [14], the conventional MPC algorithm was improved upon, and an
event-trigger-based MPC algorithm was applied to the straight-line trajectory tracking task
of an underactuated underwater vehicle (UUV). Shen et al. developed a Lyapunov-based
model predictive control (LMPC) [15]. They considered practical constraints, for example,
the actuator saturation. The algorithm was simulated and tested on the Saab SeaEye Falcon
model AUV and achieved good results. They also proposed a nonlinear model predictive
control method that realized a different type of underwater trajectory tracking for the
AUV [16]. However, in order to achieve a suitable control quantity, the MPC method needs
to predict many steps in advance, which results in the dimension of the weight matrix being
very large. Therefore, the computational efficiency of the MPC is reduced, and real-time
performance is somewhat poor.

Lyapunov-based backstepping controls represent the mainstream method for AUV
tracking controls because their control law exploits ’good’ nonlinearities in the system
dynamics. Xu et al. adopted the backstepping method to determine virtual control quantity,
then designed a controller that allowed a weight-bearing autonomous underwater vehicle
(WAUV) to track its underwater trajectory [17]. In order to solve the differential explosion
problem caused by using the backstepping method for the 3D path tracking of an underac-
tuated underwater vehicle, Zhou et al. utilized the derivative output value of a biologically
inspired model to replace the repeated calculation of multiple derivatives, which greatly



Machines 2022, 10, 450 3 of 21

reduced the complexity of the controller [18]. In [19], the backstepping method and the
disturbance state observer were combined to design a controller for trajectory tracking.
Although backstepping-method-based controllers can be designed quickly and efficiently,
they are not suitable for controlling vehicles with large dimensions; this is especially true
for backstepping controllers with more than three levels. High-order derivative terms can
amplify high-frequency micro-noise, which is not ideal for the controller.

From this analysis, it can be seen that each control algorithm possesses both advantages
and disadvantages. In addition, the research focus of this paper, namely the turtle-inspired
spherical robot (TASR), possesses characteristics such as unmeasured velocity, uncertain
model parameters, and a nonlinear system; these factors present challenges for the design
of a trajectory-tracking controller. Therefore, the design of a combined controller based on
multiple algorithms is needed for the underwater trajectory tracking of TASRs. In this paper,
the Lyapunov-based backstepping algorithm is adopted as the main controller, making
full use of its good performance with respect to nonlinear systems. TDs and LESO are
added to the main controller as auxiliary algorithms. ESOs are popular due to their ability
to estimate uncertain information, including disturbances and state information. Xie et al.
designed a reduced-order LESO to estimate disturbances that needs velocity information
as input [20]. In [21], a nonlinear ESO was constructed to estimate the unmeasured velocity
and disturbances. Inspired by [21], an LESO is put forward to avoid inaccurate estimates
inherent in the use of nonlinear ESOs.

The primary contributions of this paper are summarized in three parts:
(1) A backstepping-based double closed-loop controller is designed. Beginning with

an outer-loop backstepping controller, a virtual feedback variable is introduced to simplify
the process.

(2) TDs are shown to be capable of tracking the differential signal of the desired velocity
provided by the outer-loop controller, which solves the differential explosion problem.

(3) An LESO is designed to estimate the velocity states and lumped disturbances; it
only requires position and orientation information. In addition, we introduce a rotating
inertial coordinate to linearize the design of an ESO in terms of surge direction.

The rest of this paper is organized as follows. The modeling of a turtle-inspired
amphibious spherical robot is introduced in Section 2. In Section 3, a double closed-loop
backstepping controller with TDs and an LESO is designed, and the stability proof is
presented. The results of the simulation are discussed in Section 4. Finally, the conclusions
and directions for future work are summarized in Section 5.

2. Modeling of a Turtle-Inspired Amphibious Spherical Robot
2.1. The Mechanisms of the TASR

Based on the amphibious characteristics of sea turtles, especially the more flexible
movement of sea turtles in the water, a turtle-inspired amphibious spherical robot was
designed, as shown in Figure 1. As introduced in Reference [6], the robot consists of
upper and lower hemispheres that are joined with a mid-plate. The upper hemisphere
contains a passive water storage tank and a sealed cabin. The electrical system is placed in
the sealed cabin. The lower hemisphere consists of two separate quarter spherical shells
that can be opened or closed by servo motors on both sides according to the state of the
TASR. Generally speaking, the two separate quarter spherical shells close when the robot
maintains a hovering state but otherwise remain open. In addition, the vector propulsion
mechanism is mounted on the mid-plate. Figure 2 shows the mechanical structure of the
propulsion mechanism, which consists of four sets of propulsion units [6]. Each propulsion
unit possesses three joints, with a water jet motor at the end of the lowest joint. Due to the
limited availability of space for equipment, the TASR is only equipped with a stereo camera,
an inertial measurement unit (IMU), 12 pressure sensors, and an acoustic communication
module. Hence, the TASR is only able to perceive its position by use of the global locating
system, the pressure sensor, and the orientation information provided by the IMU. The
concrete technical specifications of the TASR are listed in Table 1.
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Figure 1. Prototype of the turtle-inspired amphibious spherical robot. (a) The two separate quarter
spherical shells are closed. (b) The two separate quarter spherical shells are open.

Figure 2. Mechanical structure of the vector-propulsion mechanism.

Table 1. The technical specifications of the TASR.

Items Parameters

Dimension (Width× Length× Height) 30 cm × 60 cm × 30 cm
Mass in air 6.5 Kg
Max thrust 3.8 N
Battery capacity 7.4 V rechargeable Ni-MH batteries (13,200 mAh)
Operation time Average 100 min

2.2. The Circuit System of the TASR

The circuit system of the TASR is depicted in Figure 3. It contains four parts: the
energy supply level, the sensor level, the decision and control level, and the executive
level. The design of the circuit system involved confronting some important difficulties,
including controlling multiple PWM devices, quickly processing visual information, han-
dling decision and controller algorithms, and so on. In order to solve these problems, we
adopted two control boards for the decision and control level. The TASR system contains
14 servo motors and 4 propellers in total, which require 18 PWM channels. On account of
the fact that the STM32F4 series single-chip microcomputer possesses a sufficient number
of PWM channels and is very commonly used, we chose it as the lower control board.
The STM32F4 focuses on driving the operation of PWM devices and acquiring depth in-
formation. We utilized a Jetson series development board running a Ubuntu system as
the main control board; it processes the information of the binocular camera and realizes
human-computer interactions.
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Figure 3. The TASR’s circuit system components.

2.3. Allocation of Propeller Force

It is notable that the vector propulsion of the robot is very flexible. In order to ensure
that the center of gravity and the centroid coincide, an “H”-shaped propulsion strategy
was adopted for the 3D trajectory tracking task, as shown in Figure 4. The “H”-shaped
propulsion strategy means that the four legs keep their hip and knee joints still, and each
leg can only be adjusted by changing the angle of the ankle joint. In this situation, the
robot can only generate three forces/movements: surge force τu, heave force τν, and yaw
movement τw, which constitute the thrust vector τ ∈ R3×1.

Figure 4. “H”-shaped propulsion strategy.

The total force/movement τ of the robot is composed of the thrust of each propeller.
F = [F1, F2, F3, F4] is the thrust vector of propeller, τ is defined as:

τ = BF (1)
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where B ∈ R4×4 is the allocation matrix of thrust. When the thrusters are allocated
according to “H” mode, B is defined as follows:

B =


− cos γ1 cos γ2 cos γ3 − cos γ4

0 0 0 0
− sin γ1 − sin γ2 − sin γ3 − sin γ4
cos γ1 − cos γ2 cos γ3 − cos γ4

 (2)

where γi(i =1,2,3,4) represents the angles of the four ankles, as plotted in Figure 5. The
range of γi is set as −π/6 ≤ γi ≤ π/6.

Figure 5. Definition of γi.

2.4. Kinematics and Dynamics Model of the TASR

For convenience of analysis, two coordinate systems are considered: the inertial
frame O − XIYI ZI and the robot body frame O − XBYBZB, as shown in Figure 6. The
inertial coordinate system is used to reflect the global position and attitude angle of the
robot. When analyzing the speed and thrust of the robot, it is convenient to use the body
coordinate system. The position and attitude vector of the 6-DOF robot in the inertial frame
is defined as:

η = [x, y, z, φ, ψ, θ] (3)

where x, y, and z represent the position of the TASR in the inertial frame, and φ, ψ, and
θ stand for the Euler angle of roll, pitch, and yaw. For the body coordinates, the velocity
vector of the TASR is written as follows:

v = [u, ν, w, p, q, r] (4)

where u, ν, and w are linear velocities of the TASR in x-direction, y-direction, and z-direction,
respectively, denoted as the surge, sway, and heave, respectively. p, q, r are the angular
velocities around x-axis, y-axis, z-axis, respectively. As the “H”-shaped propulsion strategy
is adopted for trajectory tracking, the driving force can only be provided in terms of the
degrees of surge, yaw, and heave. Therefore, the degrees of sway, roll, and pitch are
neglected in this paper. Let η = [x, y, z, θ] and v = [u, w, r]. The relationship between η and
v is shown as follows:

η̇ = R(θ)v (5)

where

R(θ) =


cosθ 0 0
sinθ 0 0

0 1 0
0 0 1

 (6)
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According to the Newton method, the dynamic model of the TASR is established:

Mv̇ + C(v)v + D(v)v + g(η) = τ (7)

where M ∈ R3×3 is the inertia and added mass matrix; C(v) ∈ R3×3 is the Coriolis and
centripetal matrix; D(v) ∈ R3×3 is the damping matrix, which is positive-definite; g(η) is
the restoring force and torque vector; and τ is the driving force vector.

Figure 6. Definition of the inertial frame and the robot body frame.

As the structure of the robot is symmetrical, the inertial matrix and added matrix can
be expressed as Equation (9) [22]. Because the underwater motion speed of the robot is not
high, i.e., it is less than 0.5 m/s, the Coriolis and centripetal matrix C(v) can be ignored.
Moreover, because the center of gravity and the buoyant center are at the same position,
which is the geometric center of the BSR, the restoring force and torque vector g(η) can be
set to 0 vector (g(η) = 04×1). The simplified model is shown as follows:

Mv̇ + D(v)v = τ (8)

where

M =

m11 0 0
0 m22 0
0 0 m33

 (9)

D(v) =

d11 0 0
0 d22 0
0 0 d33

+

Xu|u| 0 0
0 Zw|w| 0
0 0 Nr|r|

 (10)

τ = [τu, τw, τr]
T (11)

Equations (5) and (7) can be written as:

η̇ = R(θ)v (12)

v̇ = M−1τ −M−1D(v)v (13)

3. Design of the Double Closed-Loop Backstepping Controller with an LESO and TDs

In order to achieve trajectory tracking for the TASR, a double closed-loop backstepping
control with an LESO and TDs algorithm is proposed, as shown in Figure 7. In addition, the
Lyapunov stability proof is provided. An outer-loop kinematic-model-based backstepping
controller is designed to export the desired intermediate control variables according to the
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reference trajectory. An inner-loop backstepping controller is based on the dynamic model
of the TASR. Furthermore, an LESO is added into the inner-loop controller to solve two
primary problems. First, the design of the LESO is utilized to estimate the model uncertainty
and the environmental disturbances. Second, the unmeasured velocity information is
provided by an LESO estimation. Furthermore, to avoid the differential explosion of the
inner-loop backstepping controller, TDs are introduced to track the derivative of the desired
intermediate control variables from the outer-loop controller.

Figure 7. The scheme of the double closed-loop backstepping controller with an LESO and TDs.

3.1. Outer-Loop Backstepping-Based Controller

For the sake of convenience, the dynamics mode of the TASR in Equation (13) is
unfolded as the following:  u̇

ṙ
ẇ

 =

 a1u + a2u2 + a3τu
b1r + b2r2 + b3τr

c1w + c2w2 + c3τw

 (14)

The reference pose of the robot is written as ηre f = [xre f , yre f , zre f θre f ]. The derivative
of the reference trajectory is denoted as η̇re f = [ure f , vre f , wre f , rre f ] . Note that ure f and vre f
represent velocity in the inertial frame. Further, the pose error in the TASR body coordinate
system is defined as ηeB = [xeB , yeB , θeB , zeB ]. The subscript eB represents the error in the
frame O− XBYBZB. Figure 8 depicts the pose error in the horizontal plane. The pose error
in the inertial frame can be transformed into that of the body frame by Equation (15).

ηeB =


xeB

yeB

θeB

zeB

 =


cosθ 0 0
−sinθ 0 0

0 1 0
0 0 1

(ηre f − η) = T (θ)(ηre f − η) (15)

where T (θ) is the matrix of rotation transformation, and ηe can be regarded as the error
between the target trajectory and the robot. If limt→∞(|xeB |+ |yeB |+ |θeB |+ |zeB |) = 0, the
TASR is considered as having tracked the reference trajectory.
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Figure 8. Definition of the pose error in the body coordinate frame.

After deriving the two sides of Equation (15), the following state equation of pose error
is obtained:

η̇eB =


ẋeB

ẏeB

żeB

θ̇eB

 =


ryeB − u + ure f cosθeB

rxeB + ure f sinθeB

wre f − w
rre f − r

 (16)

It can be seen from Equation (16) that xeB , yeB , and θeB are coupled. xeB is regulated
by forward speed u in the robot coordinate system. θeB is regulated by heading angular
velocity r. In addition, yeB is regulated by xeB and θeB together. So, we can adjust xeB and
θeB to make limt→∞ |xeB | = 0, limt→∞ |yeB | = 0, and limt→∞ |zeB | = 0.

According to the above analysis, a virtual feedback variable is constructed:

xeB = xeB − k1 tanh(r)yeB (17)

where k1 is a positive constant and tanh() is a common nonlinear function. A specific
expression of tanh() is expressed as follows:

tanh(x) =
ex − e−x

ex + e−x (18)

It can be found that | tanh(x)| ≤ 1, if and only if x → +∞ or x → −∞, | tanh(x)| = 1.
The derivative of tanh(x) is:

d(tanh(x))
dx

= (1− tanh2(x)) (19)

The virtual feedback variables corresponding to Equation (17) are analyzed below. The
first-order derivative of k1 tanh(r), with respect to intermediate control variable r, is con-
tinuous and bounded. If the external control makes limt→∞ xeB = 0, then limt→∞ xeB = k1
tanh(r)yeB . According to ẏeB = −rxe + ure f sinθeB in Equation (16), if limt→∞ θeB = 0, then
limt→∞ ẏeB = limt→∞(−rxe) = limt→∞(−k1r tanh(r)yeB). Next, let us take part of the

Lyapunov function Vy =
1
2

y2
eB

. It can be seen that Vy is positive-definite.The derivative of

the function over time t is V̇y = yeB ẏeB = −k1r tanh(r)y2
eB

. The derivative of Vy is positive-
definite, and limt→∞yeB = 0. This shows that yeB is an indirectly controlled quantity and is
dominated by xeB and θeB once again.

The candidate function of Lyapunov is chosen:

V1 =
1
2

x2
eB
+

1
2

y2
eB
+

2
k3
(1− cos(

θeB

2
)) +

1
2

z2
eB

(20)
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where k3 is a positive constant. It is obvious that Equation (20) consists of four parts, and
each of them is positive-definite. When xe, yeB , θeB , and zeB are equal to 0, then V1 = 0.
The output angle range of IMU is θ ∈ (−π, π), the yaw angle range of the reference
trajectory is θre f ∈ (−π, π), and the angle error range is θe ∈ (−2π, 2π). The derivative of
Equation (20) is written as follows:

V̇1 = xeB ẋeB + yeẏe +
1
k3

sin((
θeB

2
) ˙θeB + zeB żeB) (21)

By introducing Equations (16) and (17) into Equation (21), we obtain:

V̇1 = xeB [ryeB − u + ure f cos θeB − k1(1− tanh2(r))(̇r)yeB − k1 tanh(r)(−rxeB + ure f sin θeB)]

+ ye[−rxeB + ure f sin θeB ]

+
1
k3

sin(
θeB

2
)(rre f − r)

+ zeB(wre f − w)

(22)

If we assign xeB = xeB + k1 tanh(r)yeB into Equation (22), then we obtain

V̇1 = xeB [−u + ure f cos θeB − k1(1− tanh2(r))(̇r)yeB − k1 tanh(r)(−rxe + ure f sin θeB)]

+ [−k1r tanh(r)y2
eB
]

+
1
k3

sin(
θeB

2
)[(rre f − r) + 2k3 cos(

θeB

2
)ure f yeB ]

+ zeB(wre f − w)

(23)

We assume that when t ∈ [0, +∞), ure f , rre f , wre f , u̇re f , ṙre f , and ẇre f of the reference
trajectory are all bounded, and ure f , rre f , and wre f do not converge to 0 at the same time.
Then, the controller law of the outer-loop backstepping controller is presented as follows:

u = ud = ure f cos θeB − k1(1− tanh2(rd))ṙdyeB − k1 tanh(rd)(−rdxeB + ure f sin θeB)

+ k2(xeB − k1 tanh(rd)yeB) (24a)

r = rd = rre f + 2k3 cos(
θeB

2
)ure f yeB + k4 sin(

θeB

2
) (24b)

w = wd = wre f + k5zeB (24c)

where ud, rd, and wd represent the desired values of the intermediate control quantities u, r,
and w, respectively.

When the three intermediate control variables reach their corresponding expected
values, Equation (25) can be obtained.

V̇1 = −k2x2
eB
− k1r tanh(r)y2

eB
− k4

k3
sin2(

θeB

2
)− k5z2

eB
(25)

where k1, k2, k3, k4, and k5 are positive scalar. If and only if xeB , yeB , θeB , and zeB are 0, V̇1 = 0,
then V̇1 is negative-definite. ṙd appears in ud, and ṙd is as follows:

ṙd = ṙre f + 2k3(ẏeB ure f + yeB u̇re f ) cos(
θeB

2
)− k3ure f yeB sin(

θeB

2
)θ̇eB +

1
2

k4 cos(
θeB

2
)θ̇eB (26)

where ẏeB and θ̇eB appear in ṙd and are computed according to Equations (27) and (28):

ẏeB = −[rre f + 2k3yeB ure f cos(
θeB

2
) + k4 sin(

θeB

2
)]xeB + ure f sin(θeB) (27)

θ̇e = −2k3yeνre f cos(
θe

2
)− k4 sin(

θe

2
) (28)
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The stability analysis of the outer-loop backstepping controller is carried out as fol-
lows. Due to the fact that ure f , rre f , wre f , u̇re f , ṙre f , and ẇre f of the reference trajectory are
all bounded, and the fact that every part of Equation (25) is negative-definite, then x2

eB
,

r tanh(r)y2
eB

, sin2(
θeB

2
), and z2

eB
all converge to 0. Further, according to limt→∞ r tanh(r)y2

eB
= 0,

limt→∞ yeB = 0. Due to limt→∞ x2
eB

= 0, limt→∞ xeB = k1 tanh(r)yeB . Because preconditions
ure f and rre f do not converge to 0 at the same time, r does not converge to 0 in the process

of t→ ∞, so limt→∞ yeB = 0 leads to limt→∞ xeB = 0. According to limt→∞ sin2(
θeB

2
) = 0 ,

limt→∞ θeB = 0 . To sum up, limt→∞(|xeB |+ |yeB |+ |θeB |+ ze) = 0, and the TASR accom-
plishes the trajectory tracking task.

3.2. The Inner Loop of the Backstepping Controller

According to the previous section, the main problem is making the TASR track the
desired trajectory by adjusting the intermediate control variables u, ν, and r to their cor-
responding desired values. However, these intermediate control quantities cannot be set
directly. The TASR system is a typical nonlinear second-order system model. Generally
speaking, the actual control quantities τu, τr, and τw should be adjusted to make u→ ud,
r → rd, and w→ wd, and then the robot can track the reference trajectory.

Errors between the expected speed and the actual speed of the robot are constructed in
Equation (29). ue

re
we

 =

 ud − u
rd − r

wd − w

 (29)

In order to make the error converge to zero, a candidate function of Lyapunov is chosen
as follows:

V2 = V1 +
1
2

u2
e +

1
2

r2
e +

1
2

w2
e (30)

If V1 is positive-definite and the last three terms are all positive-definite, then V2 is
positive-definite. By computing the derivation of Equation (30), the following equation
is obtained:

V̇2 = V̇1 + ueu̇e + re ṙe + weẇe (31)

Equation (29) is written as: u
r
w

 =

 ud − ue
rd − re

wd − we

 (32)

Substituting Equations (23), (24a)–(24c), and (32) into (31), the following Equation
is obtained:

V̇2 =− k2x2
eB
− k1r tanh(r)y2

eB
− k4

k3
sin2(

θeB

2
)− k5z2

eB

+ ue(xeB + u̇e) + re(
1
k3

sin(
θeB

2
) + (̇r)e) + we(zeB + ẇe)

(33)

Assuming that t ∈ [0, +∞), ure f , rre f , wre f , u̇re f , ṙre f , ẇre f , üre f , r̈re f , and ẅre f of the
reference trajectory are all continuous and bounded. So, we combine the dynamic model
given by Equation (14) and obtain the following control law:
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τu = τud =
xeB − k1 tanh(r)yeB + u̇d + k6(ud − u)− a1u− a2u2

a3
(34a)

τr = τrd =

1
k3

sin(
θeB
2 ) + ṙd + k7(rd − r)− b1r− b2r2

b3
(34b)

τw = τwd =
zeB + ẇd + k8(wd − w)− c1w− c2w2

c3
(34c)

For the stability analysis, the control law provided by Equations (34a)–(34c) is intro-
duced into the derivative of the Lyapunov candidate function, i.e., Equation (33), and the
following equation is obtained:

V̇2 = −k2x2
eB
− k1r tanh(r)y2

eB
− k4

k3
sin2(

θeB

2
)− k5z2

eB
− k6u2

e − k7r2
e − k8w2

e (35)

The first four terms constitute V̇1. According to the previous section, V̇1 is negative-definite.
If k6, k7, and k8 remain positive, then the last three terms are negative-definite. To sum up,
V̇2 is negative-definite, which means that limt→∞ ue = 0, limt→∞ re = 0, and limt→∞ we = 0.
In other words, when t → ∞, then u → ud,r → rd, w → wd, and finally xeB → 0, yeB → 0,
θeB → 0, zeB → 0, and the TASR completes the task of tracking the reference trajectory.

3.3. Design of an Inner-Loop Backstepping Controller with TDs

It can be found that the control law described in Equations (34a)–(34c) contains differ-
entiation terms ud, rd, and wd. As outputs of the outer-loop controller, ud, rd, and wd are
described in Equations (24a)–(24c), which also contain differentiation terms. If the differ-
entiation of Equations (24a)–(24c) is taken directly as with the traditional backstepping
technique, the problem of “explosion of terms” may result. In order to avoid this problem,
TDs referring to the ADRC methods described in the literature [23] are adopted to track the
differentiation of ud and rd. The TDs are designed as follows:{

u̇1 = u2
u̇2 = fhan(u1 − ud, u2, R0, h0)

(36){
ṙ1 = r2
ṙ2 = fhan(r1 − rd, r2, R1, h1)

(37)

where u1is the tracking signal of ud and u2 is the tracking signal of the differentiation of ud.
The same goes for r1 and r2. The definition of the function fhan refers to the literature [23].
The discrete forms of the above equations are presented as Equations (38) and (39):

f h = fhan(u1(k)− ud(k), u2(k), R0, h0)
u1(k + 1) = u1(k) + hu2(k)
u2(k + 1) = u2(k) + h f h

(38)


f h = fhan(r1(k)− rd(k), r2(k), R1, h1)
r1(k + 1) = ṙ1(k) + hr2(k)
r2(k + 1) = ṙ2(k) + h f h

(39)

h represents the sampling time. For consistency of symbols, u2 is marked as ˆ̇ud and r2
is marked as ˆ̇rd. Using the u2, r2 produced by the TDs, the controller can be written as:
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τu = τud =
xeB − k1 tanh(r)yeB + ˆ̇ud + k6(ud − u)− a1u− a2u2

a3
(40a)

τr = τrd =

1
k3

sin(
θeB
2 ) + ˆ̇rd + k7(rd − r)− b1r− b2r2

b3
(40b)

τw = τwd =
zeB + ẇd + k8(wd − w)− c1w− c2w2

c3
(40c)

3.4. Design of an LESO for an Inner-Loop Backstepping Controller

We must consider that the TASR is affected by ocean currents, propeller thrust fluc-
tuations, and other factors when it is performing operations in a lake or sea. In addition,
different speeds make the hydrodynamic parameters ai,bi, and ci, (i = 1, 2, 3) change to
some extent (we assume that a3, b3, and c3 change only slightly). These can be considered
lumped disturbances. The dynamic equation in the actual environment with disturbances
can be written as follows:  u̇

ṙ
ẇ

 =

 a1u + a2u2 + a3τu + Ωu
b1r + b2r2 + b3τr + Ωr

c1w + c2w2 + c3τw + Ωw

 (41)

where, Ωu, Ωr, and Ωw are the total disturbances in u, r, and w directions from the ocean
current, propeller thrust fluctuation, and so on.

However, the velocity of the TASR is unmeasured directly. It is necessary to combine
the kinematic and dynamic models together to form a second-order system to design an
extended state observer.

A typical nonlinear second-order system with disturbances is expressed as follows:

ẋ1 = x2

ẋ2 = f (·) + bτ

y = x1

(42)

where f (t, x) is the lumped disturbance, including a nonlinear uncertain term and an
external environment disturbance, b is the model parameter, and τ is the controller input.
Taking x1 = x1, x2 = x2, x3 = f (t, x) + Ω, the state-space equation is expressed as follows:

ẋ1
ẋ2
ẋ3
y

 =


x2

x3 + bτ
h
x1

 (43)

where h is the derivative of f (·) and |h| is bounded. Referring to [24], the following observer
can be constructed: ż1

ż2
ż3

 =

 z2 − β1e
z3 − β2e + bτ
−β3e

 (44)

where e = z1 − y, and z1, z2, and z3 are the estimates of x1, x2, and x3. β1, β2, and β3 are
gain parameters. According to the literature [25], gain parameters are adjusted based on a
bandwidth ω0. Generally, β1 = 3ω0, β2 = 3ω2

0, and β3 = ω3
0.

According to the kinematic model in Equation (6) and the dynamic model with dis-
turbances in Equation (41), it can be seen that the models for yaw and heave are easily
transformed into the typical nonlinear second-order system expressed in Equation (42).
Hence, for the heave and yaw directions, the estimates of lumped disturbances are pre-
sented as z3w and z3r, and the estimates of velocity are marked as z2w and z2r, respectively.
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In contrast, for the surge direction, an expression as in Equation (42) cannot be directly
employed. To solve this problem, a rotation inertia coordinate, as shown in Figure 9,
is established.

Figure 9. Diagram of the rotation inertial coordinate.

In the frame ORI − XRIYRI ZRI , the kinematic and dynamic models of the TASR with
respect to surge direction are expressed in Equation (45). Note that Equation (45) is easily
transformed into the typical nonlinear system expressed in Equation (42). According to
Equation (44), the lumped disturbance and velocity for surge direction can be obtained and
marked as z3u and z2u, respectively.

ẋRI = u

u̇ = a1u + a2u2 + a3τu + Ωu
(45)

Following from the above analysis, the control law of the double closed-loop backstep-
ping controller with TDs and an LESO is concluded as follows:

τu = τud =
xeB − k1 tanh(r)yeB + ˆ̇ud + k6(ud − z2u)− z3u

a3
(46a)

τr = τrd =

1
k3

sin(
θeB
2 ) + ˆ̇rd + k7(rd − z2r)− z3r

b3
(46b)

τw = τwd =
zeB + ẇd + k8(wd − z2w)− z3w

c3
(46c)

4. Simulation Results

To verify the feasibility of the proposed control scheme, which we refer to as TDs-LESO-
BSC below, we conduct some simulation analyses using the professional software MAT-
LAB2015a on a system running Windows 7, equipped with an Intel core i7 CPU at 3.6 GHz
and 8 GB of RAM. For the simulation, some parameters of the proposed controller need to
be set. The model parameters are acquired by online recursive least-squares-based model
identification [22]: a3 = 2.4, b3 = 476.2, and c3 = 2.8. The gains in Equation (46a)–(46c) are
selected as follows: k1 = 1, k2 = 2, k3 = 1, k4 = 5, k5 = 2, k6 = 4, k7 = 10, and k8 = 2.
The parameters of the TDs in Equations (38) and (39) are set as follows: h0 = 0.08, R0 = 10,
h1 = 0.06, R1 = 10, and h = 0.01. The bandwidth of the LESO in Equation (44) for the
directions of surge, yaw, and heave are set as 35, 24, and 30, respectively. Meanwhile, the
actuated forces in the surge and heave directions are bounded between −4 N and 4 N, and
the actuated torque in the yaw direction is bounded between −0.5 Nm and 0.5 Nm. The
sampling time is 0.02 s.
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4.1. 3D Trajectory Tracking Performance

To verify the 3D trajectory tracking performance, the reference 3D trajectory with
respect to time t is described by

xre f (t) = 2 cos(
π

15
t− π

2
)

yre f (t) = 2 sin(
π

15
t− π

2
)

zre f (t) = −0.1t

(47)

whose shape is a standard spiral line with radius of 2 m. The original state of the TASR is
set as x = 0, y = −1.5, z = 0, and θ = π

4 . In addition, the following disturbances in surge,
yaw, and heave degrees are introduced to the TASR. Note that gains in the sinusoidal signal
are related to different values of the positive constant β. Because the max torque of the
TASR with respect to the yaw is 0.5 Nm , the disturbance introduced for the yaw is a little
smaller than that for the other two directions.

dtbu = β sin(
π

75
t)

dtbr = 0.1β sin(
π

75
t)

dtbw = β sin(
π

75
t)

(48)

With β = 1, the curves of the tracking trajectory are shown in Figure 10. The proposed
tracking controller successfully drives the TASR toward the desired trajectory, which verifies
the stability and feasibility of the control method. The tracking errors of the TASR states
are plotted in Figure 11. All errors converge almost to zero. The required control forces
are shown in Figure 12. The control inputs in the surge and heave directions converge to a
sinusoidal signal, which demonstrates the anti-interference ability of the TDs-LESO-BSC.
On account of the fact that the disturbance in yaw is slight, the control input converges to a
steady value.

Figure 10. The trajectory considered in simulation.
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Figure 11. State errors of the TASR.

Figure 12. Actual control inputs.

Furthermore, the estimated performance of the LESO is evaluated in Figure 13. It can
be seen that the estimates of velocity and lumped disturbances are consistent with the actual
values after 10 s. Accurately observed lumped disturbances improve the anti-interference
properties of the controller. Further, accurate estimates of velocity are able to solve the
problem that miniature bio-underwater robots cannot perceive their velocity.

(a) (b)

Figure 13. The estimations of velocity and lumped disturbances. (a) The estimated value of the
velocity; (b) The estimated value of the lumped disturbance.
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For a more intuitive perspective on the tracking accuracy of the TDs, the contrasts
between the actual and estimated values are described in Figure 14. Derivations of the
surge and yaw velocities can be tracked accurately. Moreover, the derivation tracking
performance is evaluated by the RMS errors, where the RMS derivation tracking errors
for ud and rd are 0.0015 m/s2 and 0.00001 rad/s2, respectively. Accurate tracking of the
derivation for surge and yaw velocities improves the trajectory tracking effect. In the
simulation, the running time of the controller is recorded. The running times with TDs and
without TDs are 0.701 s and 0.924 s, respectively. The design that includes TDs improves
the efficiency of the proposed controller.

Figure 14. The estimations of ud, u̇d, rd, and ṙd based on fhan.

4.2. Robust Test

In order to investigate the robustness of the TDs-LESO-BSC further, we simulate TASR
tracking control under different conditions with respect to lumped disturbances, with
values of β varying in {1.0, 3.0, 5.0}. The RMS tracking errors under different lumped
disturbance conditions are computed in Table 2. It can be seen that tracking quality is
insensible to enhanced disturbances. The simulation results demonstrate the robustness
of the TDs-LESO-BSC. However, the insensitivity of the tracking quality only holds for
limited interference. Once the control input bounds restrict the disturbance-resisting
capabilities of the TASR, the tracking quality worsens, even though the disturbances can be
estimated accurately.

Table 2. RMS tracking errors with different disturbances.

β = 1.0 β = 2.0 β = 5.0

Surge RMS ex (m) 0.001 0.002 0.002
Sway RMS ey (m) 0.015 0.022 0.023
Heave RMS ez (m) 0.000 0.001 0.004
Yaw RMS eθ (rad) 0.006 0.007 0.007

4.3. Comparative Simulations

To reveal the superiority of the proposed control scheme, a simulation comparing it to
a traditional backstepping controller (BSC) is conducted in this paper. The parameters of
the BSC are consistent with the proposed controller. With β = 5.0, the curves of the tracking
trajectory are shown in Figure 15. It is found that the TASR driven by the TDs-LESO-BSC
controller is able to track the desired trajectory accurately. However, on account of a serious
disturbance, the trajectory based on BSC fails to converge to the desired trajectory. The
tracking error of the TASR can be seen in Figure 16. The position and yaw angle errors
converge to 0 when the TASR is driven by the TDs-LESO-BSC controller. However, the
errors seriously fluctuate during the adjustment of the BSC controller. Further, to analyze
the tracking error results quantitatively, the root mean square (RMS) error is employed to
evaluate tracking accuracy. As can be seen from Table 3, the RMS errors of the TDs-LESO-



Machines 2022, 10, 450 18 of 21

BSC are distinctly smaller than those of the BSC, which highlights the superior 3D tracking
performance of TDs-LESO-BSC.

Figure 15. The comparison of different controllers for tracking a spiral trajectory with serious disturbances.

Figure 16. The contrasts of the state tracking errors in the spiral trajectory tracking case.

Table 3. The RMS errors of the TASR in the spiral trajectory case.

TDs-LESO-BSC BSC

Surge RMS ex (m) 0.002 0.037
Surge RMS ey (m) 0.023 0.061
Surge RMS ez (m) 0.004 0.470

Surge RMS eθ (rad) 0.007 0.009

In order to further verify the superiority of the TDs-LESO-BSC, another compari-
son is investigated. In this case, the desired trajectory for a raster scan is described by
Equation (49). The initial state of the robot is [x, y, z, θ] = [0,−1.5,−25, π/4]. The parame-
ters for the controller are the same as in the above simulation scenarios. Disturbances as
defined in Equation (48) with β = 5.0 are exerted. The curves of the tracking trajectory are
depicted in Figure 17. It is obvious that the TDs-LESO-BSC controller is able to resist the
serious disturbances and drive the TASR to track the desired trajectory. In contrast, the
trajectory based on the traditional BSC exhibits significant oscillation. Figure 18 shows the
contrast of the state errors. The state errors based on TDs-LESO-BSC mostly converge to
zero. The position errors based on the BSC are larger, especially in the X-axial and Z-axial
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directions. For a more intuitive observation, the RMS values for the state errors are listed in
Table 4. It can be seen that the RMS errors in the X, Y, and Z axial directions are smaller for
TDs-ESO-BSC than for the BSC. The above analysis verifies the anti-interference ability and
accurate trajectory tracking ability of the proposed controller.



= [0.5t, 0, 0.1t− 30], 0 < t ≤ 60 s

[xre f (t), yre f (t), zre f (t)] = [30, 0.5t− 30, 0.1t− 30], 60 < t ≤ 80 s

[xre f (t), yre f (t), zre f (t)] = [70− 0.5t, 10, 0.1t− 30], 80 < t ≤ 140 s

[xre f (t), yre f (t), zre f (t)] = [0, 0.5t− 60, 0.1t− 30], 140 < t ≤ 160 s

[xre f (t), yre f (t), zre f (t)] = [0.5t− 80, 20, 0.1t− 30], 160 < t ≤ 220 s

(49)

Figure 17. The comparison of different controllers for tracking a raster scan trajectory with serious disturbances.

Figure 18. The contrasts of the state tracking errors in the raster scan trajectory tracking case.

Table 4. The RMS errors of the TASR in the raster scan trajectory case.

TDs-LESO-BSC BSC

Surge RMS ex (m) 0.010 0.148
Surge RMS ey (m) 0.035 0.068
Surge RMS ez (m) 0.291 4.541

Surge RMS eθ (rad) 0.020 0.023
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4.4. Discussion

On the basis of the above comprehensive simulation analysis, the proposed double
closed-loop backstepping controller with TDs and LESO is demonstrated to be a feasible
and robust trajectory tracking control method for the TASR. In addition, a comparison of
simulation times verifies that the TDs not only avoid the “explosion of term” problem but
also improve computing efficiency. Further, the robust test and comparative simulations
indicate that the proposed control scheme, enhanced by the LESO, has a satisfactory
capability to resist disturbances and model uncertainties, thus ensuring accurate trajectory
tracking performance. However, the algorithm cannot reject all environmental disturbances
due to the limited thrust capabilities of the robot’s systems.

In addition to this, there are notable advantages to the proposed control scheme. The
proposed LESO guarantees that the controller is able to achieve trajectory tracking by
relying only on position and orientation information in an unmeasured velocity situation.
This scheme provides an alternative method of trajectory tracking for miniature bio-inspired
underwater robots that cannot implement a DVL due to limited space.

5. Conclusions and Future Work

In this paper, we implemented a TASR control scheme, consisting of a backstepping
controller, TDs, and an LESO, to handle 3D trajectory tracking tasks while considering the
challenges presented by a nonlinear system, unmeasured velocity, and model parameter
uncertainties; we also considered ambient interference. The double closed-loop backstep-
ping method is known for its ability to process nonlinear systems. However, the defects of
the backstepping method are obvious. For example, with an increase in system order, there
are too many unknown parameters and the problem of differential explosion. Therefore,
we introduced a virtual feedback variable into the outer-loop backstepping control that
decreased the confined adjusted parameters. Furthermore, to avoid the problem of “explo-
sion of terms”, TDs were designed to track the derivatives of desired velocities. For the
problems of unmeasured velocity, model parameter uncertainties, and ambient interference,
an LESO was designed to reject lumped disturbances and control the TASR by relying
only on position and orientation information. Theoretical analysis and simulation results
verified the feasibility of the proposed control scheme.

In the future, this control scheme will be implemented in a TASR to verify the robust-
ness of the controller in a real environment.
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