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Abstract— Continuous angle estimation from surface elec-
tromyography (sEMG) is crucial for robot-assisted upper limb
rehabilitation. The sEMG-based control provides an optimal way
to achieve harmonic interactions between subjects and upper
limb rehabilitation exoskeletons. Also, for upper limb exoskeleton
systems with sEMG as the control signal, accurate identification
of elbow angles from sEMG is essential. However, sEMG signals
have a subject-specific nature, causing the estimation model
with sEMG signals as input to have poor generalization across
multiple subjects. Aiming at the above problem of intersubject
variability on sEMG, multisource domain adaptation (MDA) is
combined into the estimation of continuous joint movements
to obtain subject-invariant features of sEMG. Also, the feature
distribution of the training set and test set is evaluated using
the kernel density estimation (KDE) method. Furthermore, the
subject-invariant features obtained through MDA are the input of
the backpropagation neural network (BPNN). Different evalua-
tion indicators and the statistical method are used to compare the
estimation results between original features and subject-invariant
features, which proves the better generalization ability of the
model based on subject-invariant features. Also, the estimation
angle error calculated by using subject-invariant features as
the input of BPNN is controlled within 10◦, which shows the
effectiveness of the combination of MDA and shallow neural
network for the accurate subject-independent estimation of elbow
joint continuous movements.

Index Terms— BP neural network (BPNN), continuous angle
estimation, intersubject variability, multisource domain adapta-
tion (MDA), surface electromyography (sEMG).

I. INTRODUCTION

ACCORDING to the World Stroke Organization, stroke is
the second-leading cause of death and the third-leading

cause of death and disability combined in the world [1].
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Upper extremity hemiparesis is one of the most common post-
stroke disabilities [2], which negatively affects the activities
of daily living and significantly lowers the quality of life [3].
However, the rehabilitation training for patients with upper
limb hemiparesis is not easy, which requires long-term pro-
fessional intensive training. The long-term intensive training
not only results in an economic burden on patients and their
families but also brings a significant challenge to therapists
[4]. Based on the above problems, upper limb exoskeleton
rehabilitation devices with the ability to perform repetitive and
high-precision tasks and provide assistive force have received
more and more attention [5].

Surface electromyography (sEMG) is a noninvasive tech-
nique for recording muscle electrical activity, which has
been proven to have good performance for human intention
recognition [6]. The sEMG-based intention control can be
an optimal way to achieve harmonic interactions between
subjects and the upper limb rehabilitation exoskeleton. The
sEMG-based natural control provides an interface that directly
reflects the motion intention of subjects, which is an intuitive
actuation method. It can be said that the application of
sEMG signals as the control signal is almost tailor-made for
rehabilitation exoskeletons. Also, for upper limb exoskeleton
systems controlled by sEMG, the accurate identification of the
elbow angles from sEMG is essential. There are two kinds of
approaches for sEMG-based continuous joint motion estima-
tion: the model-based method and the model-free method [7].
The neuromusculoskeletal modeling combines with muscle
physiology, a joint dynamics model with sEMG signal as
input is established, and then, the joint torque or angular
acceleration is calculated [8]. However, the established model
has a complex structure and involves many physiological
parameters, which cannot be directly measured, making it
difficult for practical applications. Therefore, some researchers
consider replacing the biomechanical modeling method with
model-free machine learning methods, which is exactly the
angle estimation method adopted in this article.

However, there exists subject-specific nature for sEMG
signals, which causes the amplitude and frequency to be highly
variable among different subjects. As a result, the estimation
model with sEMG signals as input has poor generalization
across different subjects. To reduce the error from individual
differences, Yang et al. [9] built models for each subject, which
greatly limits the model generality among multiple subjects,
and the workload involved in this method is also too large.
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Considering that the high intersubject variability limits the
applicability of sEMG in shared control schemes, Trigili et al.
[10] performed the selection of a subject-independent fea-
ture set of sEMG with the help of information theory
tools. To improve the gesture recognition accuracy without
training the machine learning algorithm subject specifically,
Wahid et al. [11] normalized the time-domain sEMG features
to the area under the averaged root-mean-square (rms) curve.
He et al. [12] proposed a cross-subject emotion recognition
approach from electrocardiogram signals via unsupervised
domain adaptation (DA) to train a classifier on a shared
subspace with a lower intersubject discrepancy. Bu et al. [13]
proposed a subject-independent gesture recognition method
based on a transferred learning model. The above methods
still only use traditional time- and frequency-domain features,
without fundamentally solving the low generalization ability
of models caused by intersubject variability. Guo et al. [14]
proposed a novel deep multisource DA (MDA) approach,
which leverages the information from multiple labeled training
subjects to improve the classification performance of the
test subject. However, this method is aimed at classification,
the deep learning computation is large and the portability
is poor. In summary, to the best of our knowledge, this
article combines MDA and shallow neural network for the
first time to solve the low generalization ability of the neural
network model caused by intersubject variability on sEMG,
thereby achieving the accurate subject-independent estimation
of elbow joint continuous movements.

In this article, based on the consideration of intersub-
ject variability, sEMG-based MDA is adopted to realize the
accurate subject-independent estimation of continuous joint
movements. In general, time- and frequency-domain features
vary among subjects, making the estimation task of sEMG
signals challenging. Certainly, the variation in sEMG among
multiple subjects creates differences in the data distribution.
Through MDA, domain-invariant features can be extracted,
in which the sEMG data of a subject represent a domain,
data from multiple subjects in the training set constitute the
multiple source domains, and the data of the test subject
constitute the target domain. The subject-invariant features
are then used as the input of the backpropagation neural
network (BPNN) to estimate the continuous angle of elbow
joints. Furthermore, quantitative analysis is performed by the
evaluation criteria, and a statistical analysis is performed
through the Bland–Altman (B&A) plot. The experimental
results demonstrate that the model established with the subject-
invariant features has a better estimation performance, which
shows the effectiveness of the combination of MDA and
shallow neural network for estimating subject-independent
continuous movements of elbow joints accurately.

The rest of this article is organized as follows. In Section II,
the experimental protocol is described. In Section III, the
methods are illustrated in detail, which mainly includes signal
processing, evaluation of feature distribution, MDA, BPNN
modeling for sEMG-based angle estimation, calculation of
time delay, and evaluation criteria. In Section IV, the results
and discussion of the study are reported. Finally, the conclu-
sion is presented in Section V.

Fig. 1. Human–exoskeleton interaction based on joint angle estimation from
sEMG signals [9].

II. MATERIALS AND METHODS

A. System Overview

1) Research Basic: Bilateral upper limb rehabilitation train-
ing is a rehabilitation training strategy in which the intact side
drives the affected side to perform synchronous movements.
In a previous study by our research group, a cable-driven pow-
ered variable-stiffness exoskeleton device is developed, which
was introduced in [15] in detail. Then, an intention-based
online bilateral training system for upper limb motor reha-
bilitation was further proposed [9]. The human–exoskeleton
interaction mode using sEMG signals to estimate joint angles
is shown in Fig. 1. The sEMG signals during continuous
elbow movement are collected in real time. After signal
preprocessing and feature extraction, the features are input
into the trained regression models to estimate elbow joint
angles. The estimation results are used to control the upper
limb exoskeleton worn on the affected limb. As a result, the
exoskeleton assists the upper limb to perform the desired
movements according to the motion intention of subjects.
However, it has not been considered from the perspective
of intersubject variability to achieve the purpose of improv-
ing the accuracy of continuous angle prediction. Therefore,
intersubject variability is further considered in this article to
realize the subject-independent estimation of continuous joint
movements.

2) Overall Framework of Signal Processing: The sEMG
data are directly streamed to the workspace of MAT-
LAB (MATLAB 2020b, MathWorks) through Bluetooth low
energy (BLE) wireless communication and then further
processed in MATLAB. The flowchart is shown in Fig. 2,
which mainly includes sEMG signal processing, evaluation of
feature distribution, MDA, BPNN modeling for sEMG-based
angle estimation, calculation of time lag, and the evaluation
criteria.

B. Experimental Protocol

1) Participants: In this study, six healthy participants (three
males and three females, 22–25 years old) without any history
of neuromuscular disorder are chosen. All participants are
represented with A–F and the information of the participants
is listed in Table I. Before the experiment, each partici-
pant is introduced to the experimental protocol and signed
the informed consent. All the experimental procedures are

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 12,2023 at 08:28:32 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: SUBJECT-INDEPENDENT CONTINUOUS ESTIMATION OF sEMG-BASED JOINT ANGLES 4000910

Fig. 2. Flowchart of the processing procedure.

TABLE I

INFORMATION OF SUBJECTS

Fig. 3. Experimental setup: (a) schematic of the experimental data acquisi-
tion, (b) labeled channels of Myo armband, and (c) IMU.

approved by the Institutional Review Board (IRB) in the
Faculty of Engineering, Kagawa University, (Ref. No. 01-011
from February 2020), which follows the ethical principle of
Declaration of Helsinki.

2) Experimental Setup: The schematic of experimental data
acquisition is shown in Fig. 3(a). sEMG signals are obtained
using the Myo armband (Thalmic Labs Inc.), which is a
commercially available device that includes eight equidistance
sEMG sensors. The configuration of Myo armband electrodes
is shown in Fig. 3(b), in which the electrode with the LED light
and Myo logo that shows the sync state is channel 4, followed
by channel 5 in the clockwise direction and channel 3 in
the counterclockwise direction. The sEMG data from Myo
armband are transmitted to the computer through BLE wireless
connection. The real-time sEMG data at a frequency of 200 Hz
can be acquired through the software development kit (SDK)
of Myo. An inertial measurement unit (IMU) [JY901, WIT
motion, Shenzhen, China, as shown in Fig. 3(c)] is also

attached to the human forearm to measure the elbow joint
movements and used as a reference to verify the estimations,
and the sampling frequency of the angle sensor is set to 20 Hz.
All the results of the sEMG-based estimations are compared
with the measurements of IMU.

3) Data Acquisition: Before sEMG signal acquisition, the
participants are told to be relaxed to avoid muscle tension,
which could introduce offsets to the signal. Meanwhile, the
wrist joint and shoulder joint are kept still to avoid the
influence of other degree-of-freedom (DOF) movements on
the collected sEMG signals, which should only correspond to
the single-DOF movements of elbow joints. Myo armband is
worn at the same location of each subject’s upper arm with
channel 4 in the line of the middle finger. After wearing the
armband, each participant needs to perform a synchronous
gesture to establish a firm connection between the muscle and
the armband. When a firm connection has been established,
the participant will feel the vibration of Myo armband, and the
Myo logo will remain lit instead of flashing; then, the sEMG
signal acquisition can be performed. During the sEMG signal
acquisition, the forearm should start from the natural drooping
state, move around the elbow joint, and return to the natural
drooping state after 1 min of movements. Each subject repeats
the experiment procedure 5× with 2-min rest between two
adjacent experiments to avoid muscle fatigue.

C. sEMG Signal Processing

1) Preprocessing: Raw sEMG is the signal generated by
muscles, which is very tiny and sensitive to noise. The noise
of power-line interference (50 Hz) can be fixed by applying
a notch filter to the signal, which will remove the frequency
of 50 Hz. Because a 50-Hz notch filter is embedded in Myo
armband, there is no need for additional notch filtering. Also,
the acquired sEMG data have been normalized to [−1 1]
through Myo SDK. To remove direct current offsets and the
noises in the low-frequency range, a high-pass filter at 20 Hz
(fourth-order Butterworth) is applied to the signal. The IMU
fuses the nine-axis data (three-axis accelerations, three-axis
angular velocities, and three-axis magnetic fields) to calcu-
late quaternion, and furthermore, three-axis Euler angles can
be calculated from quaternion. The model also adopts the
dynamic Kalman filter algorithm, so the noise of the Euler
angle signal output by the IMU is less. Therefore, the angle
signals of IMU are not filtered in this article.

2) Sliding Analysis Window: Since sEMG signals are highly
nonstationary, the most common approach for the process-
ing of sEMG signals is the sliding window approach. The
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fixed-size overlapping sliding window method is used, which
facilitates the introduction of more samples but also helps to
reduce the decoding delay in online joint angle estimation [16].
The same technique has been applied to the angle signals
obtained from IMU. Due to the real-time characteristics of
human–robot interfaces (HRIs), the total time of segment
length and processing time of generating estimation control
commands should not exceed 300 ms [17]. Therefore, the
window length of sEMG is set to 250 ms (50 sample points)
with an increment of 50 ms (200 ms overlapping). Also,
to make sure that sampling points of sEMG signals are
consistent with that of the elbow joint angles obtained by IMU,
the IMU angles are also divided into separate windows with
a time length of 25 ms (five sample points) and an increment
of 5 ms (20-ms overlapping)

3) Feature Extraction: Furthermore, to estimate the angle
of joint movements, different features should be extracted
from each separate window to construct a feature vector
[18]. Thus far, features of the time domain (TD), frequency
domain (FD), and time–frequency domain (TFD) have been
widely used for sEMG signal processing [19]. TD features are
closely associated with the amplitude of sEMG, which reflects
the angle information. Therefore, the TD features of sEMG
perform better on the joint angle estimation than FD and TFD
features [20]. Based on the above consideration, three common
TD features are extracted from each analysis window in each
channel of sEMG signals, which are integrated absolute value
(IAV), mean absolute value (MAV), and rms. Based on the
number of Myo armband channels and the number of TD
features, a 24-dimensional feature vector is constructed.

1) IAV represents the sum of the absolute values of signal
amplitude in a separate analysis window, which is defined as

IAV =
N∑

k=1

|xk| (1)

where N is the number of samples in a separate analysis
window and xk represents the kth sample within an analysis
window.

2) MAV is evaluated by taking the average of each signal
within an analysis window, which is defined as

MAV = 1

N

N∑
k=1

|xk|. (2)

3) RMS refers to the effective value of muscle discharge
within an analysis window, and its change depends on the
change of sEMG amplitude, which is defined as

RMS =
√

1

N

∑N

k=1
x2

k . (3)

D. Evaluation of Feature Distribution

sEMG signals have a subject-specific nature, causing the
amplitude and spectrum to be variable among different individ-
uals, that is, the intersubject variability [21], [22]. Meanwhile,
sEMG signals are time-varying due to their nonstationary
nature, which may cause differences when the same subject

repeats the same task multiple times, that is, the intrasubject
variability [23]. The intersubject and the intrasubject vari-
ability are further reflected in the TD feature. Here, kernel
density estimation (KDE), which is a nonparametric way to
estimate the probability density function of a random variable,
is adopted to evaluate the feature distribution corresponding
to the following: 1) intersubject variability and 2) intrasubject
variability.

Considering one-dimensional data, there are n sample data
as follows: x1, x2, x3, . . . , xi , . . . , xn, which have unknown
density f at any given point x . We are concerned with
estimating the shape of this function f . The following equation
shows the kernel density estimator

f (x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
(4)

where K is the kernel and h (>0) is the bandwidth, which is
a smoothing parameter.

For the evaluation of intrasubject variability, KDE is
adopted to calculate the density of MAV features corre-
sponding to the same subject who repeats the same task
multiple times, as shown in Fig. 4. Also, for the evaluation
of intersubject variability, KDE is adopted to calculate the
density of MAV features corresponding to different subjects
with the same motion pattern, as shown in Fig. 4. Fig. 5 shows
the KDE for the evaluation of intersubject variability. Through
Figs. 4 and 5, it can be concluded that intrasubject variability
in the continuous movements of the elbow joint is far less
pronounced than intersubject variability. Therefore, intersub-
ject variability is the main consideration of this article.

E. sEMG-Based MDA

In machine learning algorithms, the collected data are
generally divided into the training set and test set. It is assumed
that the training set and the test set conform to the independent
and identical distribution, so as to ensure that the model that
performs well on the training set is also suitable for the test
set. However, in practical problems, the distribution of the
test data is often quite different from that of the training data,
so the training model cannot have a good prediction effect
on the test set. One effective approach to solving the above
problem is DA, which can reduce the interdomain discrepancy
in the feature level, that is, to learn domain-invariant feature
representation. Representative DA algorithms include transfer
component analysis (TCA) [24], geodesic flow kernel (GFK)
method [25], and maximum independence DA (MIDA) [26].

Due to the high intersubject variability of sEMG, there
also exists high different distribution between the training set
and the test set, and KDE is adopted to verify it. Therefore,
for sEMG data among multiple subjects, traditional machine
learning algorithms may not be effective because the assump-
tion of the independent and identical distribution is violated.
In our study, the sEMG data of a subject represents a domain,
data from multiple subjects in the training set constitute the
multiple source domains, and the data of the test subject con-
stitute the target domain. Since more than one source domain
is involved, MDA is required instead of single-source DA.
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Fig. 4. KDE for the evaluation of intrasubject variability. (a)–(f) KDE corresponding to the subjects A–F, respectively.

Fig. 5. KDE for the evaluation of intersubject variability. (a)–(e) KDE corresponding to the five measurements, respectively.

Single-source DA involves only one source domain and one
target domain, while MDA involves multiple source domains
and one target domain, which can collect data from multiple
source domains with different distributions. Therefore, the
MIDA method that can act as multisource domains is adopted
in this article, while TCA and GFK are not suitable to solve
the problem in this article.

MIDA is a feature-level MDA algorithm. With the design
of domain features, MIDA can be applied to the kind of
DA problem with multiple domains. Domain features indicate
the background of samples, which represent the subject label
in this article. MIDA learns a subspace that is maximally
independent of domain features, thereby reducing interdomain
discrepancy in distributions. The outline of MIDA is summa-
rized in Algorithm 1.

Algorithm 1 MIDA
Input: The matrix of all samples and their background infor-
mation; the labels of samples in the source domain; the
parameters of kernel function
Output: The projected samples.
1. Construct the domain features according to the back-

ground information.
2. Augment the original features with domain features.
3. Compute the kernel matrices.
4. Obtain the eigenvectors.
5. The output is the multiplication of the transpose of the

projection matrix and the kernel matrix.

F. BPNN Modeling for sEMG-Based Angle Estimation

BPNN is one of the most common and popular techniques
used in supervised machine learning, which imitates human
neuron activation and transmission process. BPNN is a shallow

neural network, its implementation is simple, and the results
obtained in practical applications are efficient. The network
consists of three layers: the input layer, the hidden layer, and
the output layer, where the hidden layer transmits important
information between the input layer and the output layer.
The process of BPNN is mainly divided into: 1) signal
forward propagation and 2) error backpropagation. The BPNN
architecture used in this study is given in Fig. 6.

The subject-invariant features extracted through MIDA
serve as the input of the input layer of BPNN. The number
of nodes in the input and hidden layer both depends on the
dimension of a feature vector. The number of input-layer nodes
is consistent with the dimension of the feature vector. Accord-
ing to the Kolmogorov superposition theorem, the number of
hidden-layer nodes should be equal to 2n + 2, where n is the
number of input-layer nodes. Through the neural network, the
estimated angles of elbow motion can be calculated. However,
the obtained angle curve is not smooth, so it is filtered using
the sliding window method. After sliding window filtering,
a smooth angle sequence can be obtained, which can be further
applied to HRIs with sEMG as the control signal.

G. Calculation of Time Lag

The IMU used in this article is composed of several sensors,
including gyroscopes, accelerometers, and magnetometers.
These sensors provide information about the movement after
it has been executed, while sEMG signals predict movement
intention through machine learning algorithms. Therefore,
there is a certain time lag between the angles recorded by the
IMU and the angles predicted by sEMG. The time lag between
the two kinds of angles is calculated, and the evaluation criteria
of mean angle error (MAE) and correlation coefficient (CC)
are calculated using the signal after eliminating the time lag.
Here, a fast linear correlation (FLC) algorithm is adopted in
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Fig. 6. Schematic of BPNN algorithm.

this article, which is implemented with the help of xcorr func-
tion in MATLAB. The FLC and cyclic correlation algorithm
are common methods that are usually used to calculate the
time delay of two sequences, whereas the cyclic correlation
algorithm is only applicable to calculating the time delay
of aperiodic signals. Although the continuous movements of
the elbow joint are not periodic, it has a certain periodic
trend, so the FLC algorithm is more suitable for the time
lag calculation involved in this article. The outline of FLC
algorithm is summarized in Algorithm 2.

Algorithm 2 FLC
1. Inputs: angle recorded by the IMU (x(n)) and angle

predicted by sEMG (y(n))
2. Calculate linear correlation with the xcorr function
3. Discrete Fourier transformation of x(n) and y(n) is cal-

culated by fast Fourier transform algorithm to obtain X(k)
and Y(k)

4. Cross-correlation calculation of X(k) and Y(k)
5. Make appropriate corrections to the results to get the

correlation sequence

H. Evaluation Criteria

The criteria of mean square error (MSE) and regression
value (R) are adopted to evaluate the training model per-
formance and additional test performance. Besides the two
criteria, MAE and B&A statistical analysis are used to evaluate
the estimation performance. MSE is the most common loss
function in regression, which represents the mean of the sum
of squares of the differences between the predicted angles
and the angles, as shown in (5). Also, the larger the MSE
value, the closer the predicted angles and the target angles
are. MAE is the average error between the predicted angles
and the target angles, as shown in (6). CC is used to measure
the degree of linear correlation between the predicted angles
and the target angles, as shown in (7). The B&A plot is used to
compare the consistency between two kinds of measurement
data, and the two measurement data in this article correspond
to the estimated angle data and the target angle data recorded
through IMU. The B&A plot method uses the mean values
of two metrics as x-axis and the difference between the two
metrics as y-axis, and then, the scatter distribution within the

1.96 standard deviation line is compared

MSE =
N∑

i=1

(yi − xi)
2 (5)

MAE = 1

N

N∑
i=1

(yi − xi) (6)

CC =
∑N

i=1 (xi − x̄)(yi − ȳ)√∑N
i=1 (xi − x̄)2(yi − ȳ)2

(7)

where xi represents the actual joint angle at the i th data point,
x̄ is the average value of the actual joint angles of all data
points, ȳ is the average value of the estimated joint angles of
all data points, yi represents the estimated angle at the i th data
point, and N is the total number of data points.

III. RESULTS AND DISCUSSION

In this section, the model obtained through BPNN is
presented and discussed. To verify the effectiveness of the
combination of MDA and the shallow neural network BPNN,
the comparisons of feature distribution of training and test
set, as well as modeling and prediction effect are provided.
Different evaluation indicators are adopted for quantitative
evaluation, and the B&A plot is also used for statistical
analysis.

A. Feature Distribution of Training and Test Sets

Because of the intersubject variability, the features of sEMG
signals of different subjects are different. From Fig. 4, it can
be seen that the distribution of sEMG signal features corre-
sponding to different subjects is extremely inconsistent, which
verifies the existence of the high intersubject variability. The
intersubject variability results in the different distributions of
the training set and test set. The training set consists of five
subjects, and the test set is one new subject who does not
belong to these five subjects. Fig. 7(a) clearly shows the
different distributions of the training set and the test set before
MIDA. Fig. 7(b) shows the distribution of the training set and
the test set after MIDA, from which it can be seen that the
distributions of the two are closer after MIDA than that before
MIDA, though not exactly the same.

B. Regression Model

The leave-one-subject-out test method is adopted in this
study, that is, subjects A–F serve as the test set in turn.
Although the specific values of the KDE and evaluation indi-
cators will change with the different test sets, the conclusions
are consistent. Therefore, the following analysis is carried
out using subject F as an additional test as an example, and
subjects A–E are used for modeling. For all subjects (A–F),
the data of the first five (A–E) are used for modeling, and
the last one (F) serves as the additional test. Samples are
randomly divided into the training set, validation set, and
test set, the ratio that are 70%:15%:15%, respectively. The
training regression value, validation regression value, and test
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TABLE II

MODELING PERFORMANCE OF BPNN

Fig. 7. KDE of the training set and test set (a) before MIDA and (b) after
MIDA.

regression value are recorded during the training process.
As can be seen from Table I, the regression value (R) and
MSE after MIDA are worse than that before MIDA, regardless
of training data, verification data, or test data (the larger the R,
the better the modeling effect, and the smaller the MSE, the
better the modeling effect), which shows that the modeling
performance of subject-invariant features is inferior to that
of original features. The above phenomenon is due to the
reduction of feature dimension after MIDA, the original TD
feature dimension is 24, and only two features are retained
after MIDA.

C. Estimation Performance

In the above section, the BPNN models built with the
data of the first five subjects (A–E) have been established.
In this section, the estimation comparison of the additional test
(subject F) will be illustrated. The MSE and R of an additional
test are used as the indicator of the angle estimation evaluation,
as recorded in Table II. The value of MSE dropped from
1684.6915 before MIDA to 858.2756 after MIDA, R increased
from 0.6597 before MIDA to 0.8305 after MIDA, MAE before
eliminating the time lag dropped from 26.3123 before MIDA
to 20.8587 after MIDA, MAE after eliminating the time lag
dropped from 17.9214 before MIDA to 9.7588 after MIDA,
CC before eliminating the time lag rises from 0.7870 before
MIDA to 0.8720 after MIDA, and CC after eliminating the
time lag dropped from 0.8741 before MIDA to 0.9825 after
MIDA. In addition, the smaller the MSE and MAE, the better
the prediction effect, the larger the R and CC, the better the
prediction effect. As can be seen from Table II, the prediction

effect of the model built with the subject-invariant features is
far better than the model built with the original TD features.

By comparing the results in Tables I and II, it can be
seen that although the model established by original features
performs well in the source domain, its performance in the
target domain is extremely poor, while the model established
by subject-invariant features performs poorly in the source
domain, but its performance in the target domain is greatly
improved compared with the model built with original TD
features. The reason why the model established by the original
TD feature performs well in the source domain but extremely
poorly in the target domain is due to the low generalization
ability of the model across multiple subjects. Furthermore, the
reason for the low generalization ability of the model is that
the TD features are not subject-invariant due to intersubject
variability. Through MDA, subject-invariant features can be
extracted, which can lead to better generalization ability of
the model.

As shown in Table IV, the comparison results of different
methods are summarized. Through Table IV, it can be seen
that the RMSE of this work is smaller than the original
RMSE and also smaller than the RMSE corresponding to the
method proposed by Xiao et al. [27]. At the same time, the
CC of this work is larger than the original CC and larger than
the CC of the method proposed by Xiao et al. [27] and the
method proposed by Yang et al. [9]. The method proposed
by Yang et al. [9] built a model for each subject, while
the method proposed in this article conducts cross-subject
research. Therefore, it is acceptable even if the RMSE of the
method proposed by Yang et al. [9] is slightly smaller than
the corresponding RMSE of our method, and the gap is not
large.

As can be seen from Fig. 8(a) and (c), the angles recorded
by IMU are not completely synchronized with the angles
estimated by the neural network model, and there exists a
certain time lag. The time lag is calculated through FLC,
and the result is shown in Fig. 8(e), through which it can
be known that there are nine points of phase error in the two
signal sequences. Since the window length of sEMG is set to
250 ms with an increment of 50 ms, the time lag between
the two signals is 450 ms (9 × 50 = 450 ms). Reasons
for the angles predicted by sEMG to be ahead of the angles
recorded by IMU include the following: 1) sEMG is generally
generated 30–150 ms ahead of limb movements and 2) sliding
windowing makes the current signals have the trend of future
signals.

The B&A plots of estimated and actual angles are shown in
Fig. 9, each containing 1196 observations of subject F. It can
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TABLE III

ESTIMATION COMPARISON OF THE ADDITIONAL TEST BEFORE AND AFTER MIDA

Fig. 8. Estimated angles and time lag (a) angle estimation through the model built with TD features—before time lag elimination, (b) angle estimation
through the model built with TD features—after time lag elimination, (c) angle estimation through the model built with subject-invariant features—before
time lag elimination, (d) angle estimation through the model built with subject-invariant features—after time lag elimination, (e) phase difference between the
estimated angles and IMU angles before time lag elimination, and (f) phase difference between the estimated angles and IMU angles after time lag elimination.

TABLE IV

COMPARISON OF PREDICTION PERFORMANCE WITH OTHER METHODS

be seen from Fig. 9 that the data distribution after MIDA is
more centralized than that before MIDA. The absolute value of
the “Mean” value with a time lag after MIDA (value = 2.9) is
far less than that before MIDA (value = −9.5), as shown in
Fig. 8(a) and (c). The absolute value of the “Mean” value
without time lag after MIDA adaptation (value = 3.5) is
far less than that before MIDA (value = −8.9), as shown
in Fig. 8(b) and (d). The above shows that the prediction
results of the model built with the subject-invariant features
are closer to the actual angle (i.e., IMU angle) than the model
built with the original TD features. From the comparison of
Fig. 8(a) and (c) [or Fig. 8(b) and (d)], it can be known that
the existence of time lag between the estimated angles and
IMU angles, and the two kinds of angles after eliminating the
time lag are closer.

As shown in Table V, the comparison with the state of the art
is recorded. Yang et al. [9], Trigili et al. [10], and Guo et al.
[14] all considered intersubject variability and adopted dif-
ferent ideas to solve it. Yang et al. [9] used common TD
features and FD features to build models for each subject.
Trigili et al. [10] selected subject-independent features with

the help of the information theory tool. However, these features
are only a subset of the initial traditional features. To sum up,
Yang et al. [9] and Trigili et al. [10] still only use traditional
time- and frequency-domain features, without fundamentally
solving the low generalization ability of models caused by
intersubject variability. Guo et al. [14] leveraged deep learning
to overcome individual differences in challenging abnormal
gait detection, this article focuses on recognition accuracy. The
methods of Yang et al. [9] and Trigili et al. [10] can be used
in the online application, and the method of Guo et al. [14] is
for offline mode.

In our article, subject-invariant features are obtained through
MDA. Compared with the method of Guo et al. [14], the
method in this article has the potential to be applied to real-
time applications due to the simplicity of the network model
involved. However, the current processing flows are performed
offline, but how to apply the research framework in this study
to the online stage to control the exoskeleton device in real
time is still a difficult problem. As far as I know, the existing
online MDA method has a relatively serious delay and cannot
meet the requirements of HRIs. To the best of our knowledge,
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Fig. 9. B&A plots of the IMU angles and estimated angles (a) with time lag before MIDA, (b) without time lag before MIDA, (c) with time lag after MIDA,
and (d) without time lag after MIDA.

TABLE V

COMPARISON WITH THE STATE OF THE ART

there is no relevant literature that applies MDA to the upper
limb rehabilitation exoskeleton system. Therefore, one key of
our future research direction is the online DA method that can
be applied to real-time HRIs.

Besides the study of the online DA method, intrasubject
variability also needs to be further considered. Although inter-
subject variability has a greater impact on the generalization
ability of the model, intrasubject variability cannot be ignored.
The intersubject variability is caused by the nonstationarity of
sEMG, which varies time, leading to intrasubject variability
that may also reduce the generalization ability of the model.
Therefore, our research group will also dedicate to studying
the method, which can reduce intrasubject discrepancy, thus
taking both the intersubject variability and intrasubject vari-
ability into account.

IV. CONCLUSION

In this article, the MDA and a shallow neural network
BPNN are combined to solve the problem of intersubject
variability on sEMG during the continuous movements of
elbow joints. In the processing of MDA, each subject is seen
as a domain to extract domain-invariant (i.e., subject-invariant)
features. Furthermore, BPNN is adopted to estimate the angles
by using the subject-invariant features. The experiment result
shows that the model built with subject-invariant features has
better generalization ability among multiple subjects, com-
pared with that built with original TD features. In the future,
the study on the online MDA will be further considered,
which can be used in the real-time control of upper limb
exoskeleton rehabilitation devices. Also, both intersubject vari-
ability and intrasubject variability will also be considered into
account.
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