
Research Article
A Distinguishable Pseudo-Feature Synthesis Method for
Generalized Zero-Shot Learning

Yunpeng Jia ,1 Xiufen Ye ,1 Yusong Liu ,1 Huiming Xing ,1 and Shuxiang Guo 1,2

1College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
2Faculty of Engineering, Kagawa University, Takamatsu, Kagawa 7608521, Japan

Correspondence should be addressed to Xiufen Ye; yexiufen@hrbeu.edu.cn

Received 11 June 2022; Revised 13 October 2022; Accepted 3 November 2022; Published 29 November 2022

Academic Editor: Vinh Truong Hoang

Copyright © 2022 Yunpeng Jia et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Generalized zero-shot learning (GZSL) aims to classify seen classes and unseen classes that are disjoint simultaneously. Hybrid
approaches based on pseudo-feature synthesis are currently the most popular among GZSL methods. However, they sufer from
problems of negative transfer and low-quality class discriminability, causing poor classifcation accuracy. To address them, we
propose a novel GZSL method of distinguishable pseudo-feature synthesis (DPFS). Te DPFS model can provide high-quality
distinguishable characteristics for both seen and unseen classes. Firstly, the model is pretrained by a distance prediction loss to
avoid overftting. Ten, the model only selects attributes of similar seen classes and makes sparse representations based on
attributes for unseen classes, thereby overcoming negative transfer. After the model synthesizes pseudo-features for unseen
classes, it disposes of the pseudo-feature outliers to improve the class discriminability. Te pseudo-features are fed into a classifer
of the model together with features of seen classes for GZSL classifcation. Experimental results on four benchmark datasets verify
that the proposed DPFS has GZSL classifcation performance better than that in existing methods.

1. Introduction

Target classifcation and recognition have been dramatically
improved with the development of deep learning technol-
ogies. Traditional deep learning methods rely heavily on
large-scale labelled training datasets such as ImageNet [1].
However, some are infeasible in extreme cases without la-
belled samples of some classes [2]. To address it, zero-shot
learning (ZSL), which imitates the process of human rec-
ognition, has been proposed to link seen classes (available in
training datasets) and unseen ones (not available in training
datasets) using auxiliary information (e.g., attributes [3] and
word vectors [4]). Conventional ZSL methods only consider
the recognition of unseen classes but neglect that of seen
classes. It leads to the failure of simultaneous recognition of
them [5]. Subsequently, generalized zero-shot learning
(GZSL) [6] has been found to address it.

Most previous GZSL works are mainly divided into
mapping-based approaches [7, 8] and hybrid approaches.
Te former learns a visual-semantic projection model

trained with labelled samples. However, they are prone to
overftting due to limitation of labelled sample numbers and
domain shift between disjointed seen classes and unseen
classes [9], failing in unseen class classifcation. Te latter,
including generating-based approaches [10] and synthesis-
based ones, has been proposed to alleviate overftting.
Generating-based approaches (e.g., generative adversarial
networks (GANs) [11] and variational auto-encoders
(VAEs) [12]) generate pseudo-features for unseen classes
with prior semantic knowledge. However, they sufer from
mode collapse [13] because it is challenging to train hybrid
models. Unlike them, synthesis-based approaches [14–16]
synthesize pseudo-features for unseen classes by using se-
mantic information and seen class features. However, they
sufer from negative transfer [17] and low-quality class
discriminability [18].

In this paper, we propose a novel two-stage method of
distinguishable pseudo-feature synthesis (DPFS) for GZSL
tasks, as shown in Figure 1. Here, the embedding network
and the preclassifer are jointly pretrained to extract

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6220501, 14 pages
https://doi.org/10.1155/2022/6220501

mailto:yexiufen@hrbeu.edu.cn
https://orcid.org/0000-0001-9583-8727
https://orcid.org/0000-0001-9812-2679
https://orcid.org/0000-0003-4950-6304
https://orcid.org/0000-0002-8013-9306
https://orcid.org/0000-0002-0607-9798
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6220501

distinguishable features for seen classes and simultaneously
predict prototypes for unseen ones in stage 1. It ensures that
the features of seen classes are well-kept and avoids over-
ftting efectively. Next, distinguishable pseudo-features of
unseen classes are synthesized through the attribute pro-
jection module (APM) and the pseudo-feature synthesis
module (PFSM) in stage 2. Here, for each unseen class, APM
builds a sparse representation based on attributes to output a
base vector. It only uses attributes of the base classes (i.e., the
similar seen classes), thereby overcoming negative transfer.
Furthermore, PFSM creates feature representations and
synthesizes the pseudo-features by using the base class

features, the base vectors and the unseen class attributes.Te
outliers of pseudo-features are disposed of to get distin-
guishable pseudo-features and improve the class discrimi-
nability. Te distinguishable features are fed to the classifer
to boost GZSL classifcation performance.

Our major contributions are summarized as follows:

(1) We proposed a novel generalized zero-shot learning
(GZSL) method of distinguishable pseudo-feature
synthesis (DPFS). Te proposed method can further
improve GZSL classifcation performance compared
with other state-of-the-art methods.

Seen Class
Images

CNN
Backbone Embedding

Network

Latent
Space

Attributes

Attributes

PFSM

Distinguishable
Features

Pre-
Classifier

Classifier
Distinguishable
Pseudo-features

Stage 1

Stage 2

Pseudo-Feature Synthesis Module (PFSM)

Candidate
Pseudo-features

Dispose Distinguishable
Pseudo-features

Distinguishable
FeaturesSeen class

Attributes

Attribute Projection
Module (APM)

(c)

(a)

(b)

APM

Unseen Class
Attributes

Base Class
Attributes

Prediction
Classification

GZSL
Classification

Selected
Features

+Sparse
Representation

Feature
Representation

Base Vector

m1
m2
m3
m1
m2
m3

Minimization

Distance
Prediction

Loss

Pθpcls

Pθcls

Eθen

m1 m2 m3

Figure 1: Illustration of DPFS. (a) DPFS consists of an embedding network, an attribute projection module (APM), a pseudo-feature
synthesis module (PFSM), a preclassifer and a classifer. In stage 1, the embedding network and the preclassifer are jointly pretrained to
extract distinguishable features for seen classes. In stage 2, the network synthesizes distinguishable pseudo-features for unseen classes
through APM and PFSM.Ten, the features and the pseudo-features are fed into the classifer for GZSL tasks. (b) APMDetails. APM builds
sparse representations based on attributes. (c) PFSM Details. PFSM creates feature representations and synthesizes distinguishable pseudo-
features with the selected features, the base vectors, and the unseen class attributes.Te outliers of candidate pseudo-features are disposed of
to get distinguishable pseudo-features.

2 Computational Intelligence and Neuroscience

(2) We pretrained ourmodel by a well-designed distance
prediction loss while predicting prototypes for un-
seen classes, thereby avoiding overftting.

(3) We only selected attributes of similar seen classes
when making sparse representations based on at-
tributes for unseen classes, thereby overcoming
negative transfer efectively.

(4) We screened the outliers of synthesized pseudo-
features and disposed of them to further improve
class discriminability.

2. Related Works

Mapping-based approaches can be traced back to early ZSL
tasks [2–4, 9]. Tey learn a mapping function between visual
features and semantic features by supervised learning. So, it
is important to construct a feature-semantic loss function
that can be used to train mapping model [19]. But early
methods are prone to overftting in GZSL tasks [7]. CPL [8]
learned visual prototype representations for unseen classes
to solve the problem. To obtain discriminative prototype,
DVBE [20] used second-order graphical statistics, DCC [21]
learned the relationship between embedded features and
visual features, and HSVA [22] used hierarchical two-step
adaptive alignment of visual and semantic feature manifolds.
However, the prototype representation is constrained and
does not correspond to actual features [10] due to domain
shift. Diferent from these works, we propose a distance
prediction loss, which constructs not only feature-attribute
distance constraint of seen classes but also predicts unseen
class prototypes under the guidance of a preclassifer. It
keeps seen class features from disturbing the classifcation of
unseen classes to avoid overftting.

Generating-based approaches [23, 24], which utilize
GANs and VAEs, have been widely applied to produce
information about unseen classes and improve the prototype
representation for GZSL tasks. Tey generate pseudo-fea-
tures for unseen classes under the prior condition of se-
mantic knowledge and random noise. LDMS [25], Inf-FG
[26], and FREE [27] improved the generating strategy from
aspects of discrimination loss, consistency descriptors, and
feature refning. Besides, GCF [28] presented counterfac-
tual-faithful generation to solve recognition rate imbalance
between both seen classes and unseen ones. Although the
strategies of generating-based methods are added to our
proposed method, the use of simplex semantic information
and the training difculty [16] of GANs cause mode collapse.

Synthesis-based approaches [24, 29] integrate features
and semantics of seen classes to enhance the feature di-
versity. SPF [15] designed a synthesis rule to guide feature
embedding. TCN [14] exploited class similarities to build
knowledge transfer from seen to unseen classes. To deal with
the domain shift, LIUF [16] synthesized domain invariant
features by minimizing the maximum mean discrepancy
distance of seen class features. However, it would lead to
negative transfer by mixing irrelevant class information.
Diferent from the above mentioned, we only select the
similar seen classes, instead of all seen classes, to fnish

knowledge transfer, thereby avoiding negative transfer
caused by the mixing of irrelevant information. Ten, we
utilize distinguishable features extracted from the pretrained
embedding network to apply to the pseudo-feature syn-
thesis. Besides, we use a preclassifer to dispose of the outliers
of synthesized components, thereby improving class dis-
criminability. Unlike the method [24] of using synthesized
elements from other domains, we only utilize the similar
seen classes from this domain to overcome the unavailability
of data from other domains.

3. Proposed Method

GZSL is more challenging than ZSL, which recognizes
samples only from unseen classes, because GZSL needs to
recognize samples from seen classes and unseen classes.
Terefore, we propose the DPFS method to improve the
theoretical basis of GZSL further and boost the classifcation
performance. DPFS can synthesize distinguishable pseudo-
features for unseen classes, and then use the pseudo-features
to fnish GZSL classifcation together with features of seen
classes. In this chapter, we frst defne notations and def-
nitions of GZSL, then outline the proposed method, in-
cluding base class selection, distinguishable feature
extraction, attribute projection, and distinguishable pseudo-
feature synthesis. Finally, we provide the process of our
training algorithm.

3.1. Mathematical Formulation. In GZSL tasks, suppose we
have S seen classes yS and U unseen classes yU, yS ∩yU � ∅.
We give training dataset ∆S � ys(xi, yi) ∈ Ξ × yS􏼈 􏼉

ns
i�1 where

ns is the sample number, Ξ is visual space, xi is a visual
feature, and yi is the class index of xi. Te mapping function
of the embedding network is denoted as φ: Ξ⟶ ς where ς
is latent space. Te weight parameters of the embedding
network, the preclassifer and the classifer are θen, θpcls, and
θcls, respectively. AS � [aS

1, . . . , aS
S] and AU � [aU

1 , . . . , aU
U]

are class-attribute matrices of seen classes and unseen
classes, respectively. s and u are indexes of seen classes and
unseen classes, s ∈ yS and u ∈ yU, respectively.

GZSL methods learn a function fGZSL: Ξ⟶ yS ∪yU

with training dataset ∆S, and class-attribute matrices AS and
AU to classify disjoint seen classes and unseen ones at the
same time. After the training, both seen and unseen classes
from testing datasets will be predicted by fGZSL.

3.2. Base Class Selection. For each unseen class, we only
select the top K seen classes similar to the unseen classes to
overcome negative transfer. Attributes of all base classes of
unseen class u are with the closest distance to the attribute of
the unseen class, which are as follows:

Βu � 1 −
a

U
u ∙a

S
s

a
S
s

����
���� a

U
u

����
����

|s ∈ y
S

⎧⎨

⎩

⎫⎬

⎭, (1)

y
B
u � k|1 −

a
U
u ∙a

S
k

a
U
u

����
���� a

S
k

����
����
∈ topk Bu(􏼁

⎧⎨

⎩

⎫⎬

⎭, (2)

Computational Intelligence and Neuroscience 3

where topk(∙) is an operator that sorts elements from small
to large and selects indices of the top K elements. yB

u stones
indices of the top K base classes, which are the frst to the K

th seen classes most similar to unseen class u.

3.3. Distinguishable Feature Extraction. In stage 1, we pre-
train the embedding network and the preclassifer. It makes
the embedding network extract distinguishable features for
seen classes to build a relationship between classes and
semantics, as shown in Figure 1. Te attributes obtained by
cognitive scientists [30] are the most commonly used se-
mantic knowledge, and they are based on the high-level
description of target objects specifed by human beings [2].
We introduce the constraint of feature-attribute distance by
imitating meta-learning [31], and build prototype repre-
sentations, as shown in Figure 2. Te customary way to
construct the meta-learning task is called as K-way-N-shot
[32], where N labelled samples in each of the K classes are
provided in each iteration of the model training.

We randomly sample one unseen class and K seen
classes per iteration. And, we set support set
Σ � (xi, yi)|yi ∈ ΨS􏼈 􏼉

N×K

i�1 and query set
Θ � (xi, yi)|yi ∈ ΨS􏼈 􏼉

N×K+Q×K

i�N×K+1 . Te visual features from Σ
produce prototypes for seen classes through the em-
bedding network are as follows:

cyi
�

􏽐
N
i�1 Eθen xi(􏼁

N
, (3)

where xi is a visual feature from seen class s andN is the class
number. Ten, a feature-attribute distance (FAD) loss is
constructed as follows:

ΛFAD � 􏽘

xi,yi()∈Θ

Eθen xi(􏼁 − cyi

�����

�����
2

2
+ cyi

− a
S
yi

�����

�����
2

2
􏼒 􏼓. (4)

Diferent from the meta-representation [33] restrained
by the distance minimization of intraclass features, we act on
the feature-attribute distance constraint to structure the
meta-representation associating common characteristics
between diferent attributes. After the constraint, features in
latent space are pulled near their prototypes to ensure that
the similar attracts and the dissimilarity repels each other.
Te prototype and the attribute from the same class are close
to each other. Terefore, the features of seen classes in latent
space can be regarded as the distinguishable features
extracted from the embedding network.

To keep the embedding network from overftting, the
prototypes are predicted by features of their base classes. A
component from the base class is denoted as follows:

vk � Eθen choice bk(􏼁(􏼁, (5)

Query Set

Support Set

Latent Space
Unseen

Class
Instance

Base Class Features

Base Class Prototypes

Base Class Attributes

Unseen Class Attributes

Figure 2: Illustration of feature-attribute distance constraint. For example, the unseen class is a bobcat and its base classes are leopard, fox
and wolf.

4 Computational Intelligence and Neuroscience

where choice(∙) is a choice operator, specifcally choice(bk)

means randomly choosing a visual feature of the k th similar
base class from ΨB

u . A predicted prototype is denoted as
follows:

􏽥cu �
􏽐bk∈ΨB

u
vk + a

U
u

K + 1
. (6)

For each iteration, we build a prototype query set ΘU �

(􏽥cu, u)|yi ∈ ΨU􏼈 􏼉
U

i�1. Ten, a preclassifcation loss ΛPC op-
erating to pretrain the preclassifer is donated as follows:

ΛPC � 􏽘

xi,yi()∈Θ

log Pθpcls yi|Eθen xi(􏼁􏼐 􏼑􏼒 􏼓 − 􏽘

􏽥cu,u()∈ΘU
log Pθpcls u|􏽥cu(􏼁􏼒 􏼓,

(7)

where p(∙|∙) is a SoftMax function for the preclassifcation.
Ten, ΛFAD and ΛPC are summed to form distance pre-
diction loss ΛDP as follows:

ΛDP � ΛFAD + ΛPC. (8)

We use the distance prediction loss to jointly pretrain the
embedding network and the preclassifer. After that, seen
classes will be classifed, and unseen classes will be predicted
preliminarily. It prevents trade-of failure between seen and
unseen classes. Besides, features of seen classes will be
extracted, and then used for unseen pseudo-feature
synthesis.

3.4.AttributeProjection. Inspired by sparse coding, wemake
a sparse representation for each unseen class. We select
attributes only from the base classes unlike the methods
[14, 16] using all seen classes, to build attribute projections
from seen to unseen classes. For unseen class u, the matrix of
its attribute projection is denoted as follows:

Mu � a
S
b1

. . . a
S
bK

􏽨 􏽩, (9)

where aS
b1

, aS
bK
∈ ΨB

u . Te attribute projection can represent
the unseen class information by using sparse representation
vector set mu􏼈 􏼉

U

u�1. Te objective function of the attribute
projection is as follows:

mu � arg min
mu

a
U
u − Mumu

����
����
2
2 + β1 mu

����
����1 + β2 mu

����
����
2
2,

(10)

where β1 and β2 are two regulation coefcients, β1, β2 > 0.
Te mixed regularizations of L1-norm and L2-norm have
the advantages of sparsity and trade-of between deviation
and variance [34]. Both β1 and β2 are set as 0.4 with ap-
propriate generality. Te objective function is optimized by
the optimal local condition of Karush-Kuhn-Tucker [35]
where mu are non-negative. We normalize mu by using the
following equation:

mu �
mu

mu

����
����

. (11)

(a) (b) (c)

(d)

Figure 3: Illustration of pseudo-feature synthesis. (a) Attribute projection. (b) Results after the attribute projection. (c) Results after the
attribute weighting. (d) Results after the outlier disposing.

Computational Intelligence and Neuroscience 5

Ten, we treat mu as the base vector. Te attribute
projection provides a vital item for the pseudo-feature
synthesis, as shown in Figure 3.

3.5. Distinguishable Pseudo-Feature Synthesis. For unseen
class u, we randomly choose a feature from each of its base
classes to construct an embedding matrix v1 · · · vK􏼂 􏼃. Te
base vectors are utilized for weighting the chosen features that
are embedded into the attribute projection, as shown in
Figure 3(a). Ten, a feature representation is formulated as
follows:

􏽥v � (1 − c) v1 · · · vK􏼂 􏼃mu + ca
U
u , (12)

where c is a weighting coefcient (c ∈ [0, 1]). However, the
feature representation only integrated with features of the
base classes may be scattered and produce outliers of can-
didate pseudo-features, as shown in Figure 3(b). Terefore,
attribute information is integrated into the feature repre-
sentation to synthesize candidate pseudo-features, as shown
in Figure 3(c).

To dispose of the outliers, we screen them by the fol-
lowing equation:

f(􏽥v) �
0,max

s∈ΨS
Pθpcls(s|􏽥v)≥ τ,

1, otherwise,

⎧⎪⎨

⎪⎩
(13)

where τ is creditability threshold (τ ∈ [0, 1]). Te preclassifer
acts as an operator of the outlier disposing. It screens and
reserves the credible pseudo-features satisfying f(􏽥v) � 1 to
get distinguishable pseudo-features of unseen classes, as
shown in Figure 3(d). After the operations of the attribute
projection and the pseudo-feature synthesis, the synthesized
features integrated with the information of the similar base
classes and unseen classes have separability characteristics.

3.6. Train and Inference. We conduct the DPFS model
training. Algorithm 1 shows the pseudo-code of the DPFS
training algorithm.Te algorithmmainly includes two-cycle
structures because DPFS is a two-stage method. Firstly, the
sequence structure from lines 1 to 2 performs the attribute
projection to get the base vector for each unseen class. Next,
the frst cycle from lines 3 to 9 performs the embedding
module pretraining to extract distinguishable features of
seen classes. Ten, the second cycle from lines 10 to 15
performs the classifer training for GZSL tasks. In each it-
eration of the classifer training, we randomly select a certain
number of the whole samples from training samples and
synthesized pseudo-feature samples, where the number of
the selected whole samples isNw. Here, the proportion of the
pseudo-feature samples in the whole samples is set as η.
After each iteration, the classifer is adopted for evaluation.

4. Experimental Results

4.1. Datasets. Te DPFS model is evaluated on four widely
datasets as evaluating benchmarks, i.e., Animals with At-
tributes 2 (AWA2 [6]), aPascal & Yahoo (aPY [36]), Caltech

UCSD Birds 200 (CUB [37]), and SUNAttribute (SUN [38]).
AWA2 and aPY are coarse-grained datasets and aPY in-
cludes a higher proportion of unseen classes than AWA2.
CUB and SUN are fne-grained datasets, especially SUN,
with more whole classes and fewer training samples per class
than CUB. Table 1 summarizes the statistics of the four
evaluating benchmarks.

4.2. ImplementationDetails. We conduct ResNet-101 [39] as
a backbone based on a convolutional neural network. Visual
features are extracted from the output of the fnal avg-
pooling layer after the backbone is pretrained on ImageNet
[1]. Figure 4 shows the network structures of the DPFS
model including the embedding network, the preclassifer
and the classifer. Te embedding network is composed of
three fully connected (FC) layers, and the back of each layer
is connected to a ReLU activation function for nonlinear
activation. Both the preclassifer and the classifer have the
samemodules.Teir modules are composed of two FC layers
and the output dimensions equal the total number of all
classes. For the four benchmarks, the middle layer dimen-
sion of the classifer is 512 for AWA2 and aPY, and 1024 for
CUB and SUN, respectively.

Ourmodel is coded in PyTorch and runs onGeForce RTX
2080 Ti. It is trained by an adaptive moment estimation
(Adam) [40] optimizer. During the embedding module
pretraining, sample numbers of each class in both the support
set and the query set, N and Q, are set as 4 for AWA2, aPY,
and CUB, and 2 for SUN, respectively. Te learning rate of
our model is 10−4. During the classifer training, the number
of the whole selected samples, Nw is set as 1000. Te classifer
is trained with a learning rate of 10−4 and the embedding
module is fne-tuned with a learning rate of 10−6. Besides, four
additional hyper-parameters, the proportion of pseudo-fea-
ture samples η, creditability threshold τ, number of base
classes K, and weighting coefcient c will be discussed later in
the hyper-parameter sensitivity chapter. Samples from
training datasets are used to train our model by supervised
learning. And samples from the testing datasets are used to
evaluate GZSL classifcation performance of our model.

Te accuracies of average seen classes (As) and average
unseen classes (Au) are computed based on the universal
evaluation protocols [6].

As �
1
ΨS

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

y∈ΨS

correct pre di ctions iny

samples iny
, (14)

Au �
1
ΨU

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

y∈ΨU

correct pre di ctions iny

samples iny
. (15)

We evaluate the simultaneous classifcation accuracy of
both seen and unseen classes by computing harmonic mean
H as follows:

H �
2 × As × Au

As + Au
, (16)

H is regarded as the most crucial criterion to measure the
GZSL classifcation performance.

6 Computational Intelligence and Neuroscience

4.3. Hyper-Parameter Sensitivity. Tere are four hyper-pa-
rameters including the proportion of pseudo-feature sam-
ples η, creditability threshold τ, number of base classes K,
and weighting coefcient c. We discuss the sensitivity of the
hyper-parameters because proper hyper-parameters give
our model extra reliability and robustness.

Proportion η controls the frequencies of obtaining in-
formation from seen classes and unseen ones. Higher η
provides the classifer with more opportunities to learn the
characteristics of unseen classes. Figure 5 shows GZSL
classifcation performance under diferent η on the four

benchmarks. We set η within the range from 0.7 to 0.97 and
select the proper η value according to the optimal GZSL
performance.

As will decrease slowly while Au and H will increase
until reaching a peak along with the increase of η in most
cases. Tis result reveals that DPFS can provide more
balanced GZSL performance by adjusting η. Te decreasing
ratio of As will increase after Au and H reach the peak. It
indicates a proper selection of η is necessary to solidify seen
class classifcation. When H reaches the peak, η is diferent
on the four benchmarks. Te value depends on the

Input: training dataset ΔS, class-attribute matrices of seen classes and unseen onesAS andAU, learning rate λ, and max-epochs of
the embedding module pretraining and the classifer training npre and nt

Initialize: set of the weight parameters of the embedding module and the preclassifer W � θen, θpcls􏽮 􏽯, classifer weight parameter
θcls

(1) Build attribute projection matrices with AS and AU by, and equations (1), (2), and (9) for unseen classes
(2) Compute the base vectors with the matrices and AU by equations (10) and (11)
(3) for step� 0, . . ., npredo
(4) Set Σ � (xi, yi)􏼈 􏼉

N×K

i�1 and Θ � (xi, yi)􏼈 􏼉
N×K+Q×K

i�N×K+1
(5) Compute base class prototype ck with Eθen by equation (3)
(6) Build prototype query set ΘU � 􏽥ci􏼈 􏼉

Q

i�1 with Eθen and AU by equations (5) and (6)
(7) Compute ΛDP by equation (8)
(8) Update W←W + λ1∇WΛDP
(9) end for
(10) for step� 0, . . ., ntdo
(11) Synthesize candidate pseudo-features for unseen classes by equation (12)
(12) Dispose of the outliers of candidate pseudo-features by equation (13)
(13) Select a certain number of samples
(14) Train the classifer with the selected samples to update θcls while fne-tune θen.
(15) end for

Output: Embedding network Eθen and classifer Pθcls

ALGORITHM 1: DPFS training algorithm.

Embedding
Network

FC
 la

ye
rInput

Re
LU

V-D 2048

FC
 la

ye
r

2048 1024

Re
LU

FC
 la

ye
r

1024 S-D

Output

Classifier

Re
LU

Input

FC
 la

ye
r

S-D

FC
 la

ye
r

Dim C-D

Output

Pre-
Classifier

Input

FC
 la

ye
r

S-D

FC
 la

ye
r

Dim C-D

Output

Figure 4: Illustration of network structures of the embedding network, the preclassifer and the classifer. In the embedding network, the
dimensions of the input and the output features aremarked on the left side and the right side of the FC layers, respectively. “V-D”, “S-D”, “C-
D”, and “Dim” are the dimensions of visual features, the output features of the embedding network, the class number, and the middle layer
dimension of the preclassifer/classifer, respectively.

Computational Intelligence and Neuroscience 7

granularity of training samples. In general, the value on the
benchmarks with a few training samples (such as SUN)
should be lower than that on the benchmarks with mul-
titraining samples (such as AWA2), and the value on the
benchmarks with a higher proportion of unseen classes
(such as aPY and CUB) should be higher. Terefore, we set
η� 0.85 for AWA2, η� 0.94 for aPY, η� 0.91 for CUB, and
η� 0.76 for SUN.

Creditability threshold τ controls the efect of the outlier
disposing. Figure 6 shows the performance under diferent τ
on the four benchmarks. We set τ within the range of 0.7 to

0.95. Tis result reveals that As will decrease and Au will
increase along with the increase of τ in most cases.
Meanwhile, H will increase until reaching a peak. When the
range of τ is 0.8 to 0.9, H will reach the peak, and the
classifcation accuracy will be the best. It indicates proper τ
can prevent the outliers from interfering with seen class
classifcation while maintaining unseen class classifcation.
Terefore, we set τ � 0.85 on all the four benchmarks.

Numbers of base classes and weighting coefcient, K and
c, concurrently control the pseudo-feature synthesis si-
multaneously. Figure 7 shows the H heatmap results of the

0

10

20

30

40

50

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

0.73 0.910.880.82 0.94 0.970.790.76 0.850.70
η

As
Au
H

(a)

0.73 0.910.880.82 0.94 0.970.790.76 0.850.70
η

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

As
Au
H

(b)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.970.70
η

As
Au
H

(c)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.970.70
η

As
Au
H

(d)

Figure 5: Results of classifcation under diferent η on (a) AWA2, (b) aPY, (c) CUB, and (d) SUN.

8 Computational Intelligence and Neuroscience

performance under diferent K and c values on the four
benchmarks.Te range of K is set from 3 to 9 for AWA2 and
CUB, from 6 to 12 for aPY, and from 2 to 8 for SUN, re-
spectively. Te range of c is set from 0 to 0.4.

Te result reveals that N has a more signifcant impact
than c on H. H will increase frst and then reduce along with
the increase of N. It indicates that an appropriate integration
with the similar seen classes will achieve outstanding clas-
sifcation accuracy, but an over-integration will degrade the
classifcation accuracy because it mixes information of ir-
relevant classes. According to the performance on the four
benchmarks, N making H reach peak depends on the
granularity of training samples. In general, N on the

benchmarks with a few training samples (such as CUB and
SUN) should be lower than that on the benchmarks with
multitraining samples (such as AWA2), and N on the
benchmarks with the higher proportion of unseen classes
(such as aPY) should be higher. So, we set N � 5 for AWA2,
N � 9 for aPY, N � 6 for CUB, and N � 3 for SUN.

Te result also reveals that when N is fxed, H will also
increase frst and then reduce along with the increase of c in
most cases. It indicates that weighting a certain proportion of
attributes will improve the classifcation accuracy and the
proper introduction of attribute information can raise the
performance of our model. Terefore, we set c � 0.2 for
AWA2, c � 0.3 for aPY, c � 0.1 for CUB, and c � 0.35 for SUN.

0

10

20

30

40

50

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

0.75 0.8 0.85 0.9 0.950.7
τ

As
Au
H

(a)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

0.75 0.8 0.85 0.9 0.950.7
τ

As
Au
H

(b)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

0.75 0.8 0.85 0.9 0.950.7
τ

As
Au
H

(c)

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

0.75 0.8 0.85 0.9 0.950.7
τ

As
Au
H

(d)

Figure 6: Accuracy of classifcation under diferent τ on (a) AWA2, (b) aPY, (c) CUB, and (d) SUN.

Computational Intelligence and Neuroscience 9

4.4. Performance Results. Table 2 shows GZSL classifcation
performance results compared with existing state-of-the-
art approaches and the proposed DPFS. Te existing ap-
proaches contain the mapping-based, the generating-
based, and the synthesis-based approaches, which are
marked with †, ⸶, and ⸷, respectively. Among these, the
results show that DPFS gains the best performance on
AWA2, CUB, and SUN, and achieves the second perfor-
mance on CUB. Compared with the mapping-based

approaches, DPFS is superior to DCC by 5.5% on aPY, and
DVBE by 4.8%, 2%, and 5.4% on AWA2, CUB, and SUN,
respectively. Compared with the generating-based ap-
proaches, DPFS is superior to FREE by 4.7% on AWA2,
LDMS by 4.9% on aPY, and GCF by 3.9% on SUN, re-
spectively. And compared with the synthesis-based ap-
proaches, DPFS is superior to LIUF by 1.6%, 1.1%, 6%, and
3.2% on AWA2, aPY, CUB, and SUN, respectively. DPFS
signifcantly improves Au and avoids overftting.

3

4

5

6

7

8

9

70.1

70.7

70.6

67.5

67.9

70.4

70.7

70.6

68

68.4

68.7

70.5

71.3

70.8

68.4

68.8

69.1

68.4

71

71.7

71.6

68.3

69.2

69.4

68.5

71.6

71.8

71.5

68.5

69.3

69.3

68.6

71.6

71.7

71.3

68.2

69.7

69.1

68.3

71.3

71.3

71.4

67.6

69

68.4

67.9

70.8

70.9

70.7

67.5

68

67.7

70

70.2

70.4

67.8

67.5

65.6

67.1

66.3 66.6 67.1

67.3

N

γ

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4
(a)

6

7

8

9

10

11

12

47.8

48.8

47.9

47.6

47.3

48.7

49.6

48.9

48.3

48.1

47.6

49.3

49.6

49.8

49

49

48.6

49.7

50

50.4

49.1

49.5

49.2

51.3

51.5

50.5

49.9

50.2

47.4

50.7

51.8

52.7

51.4

50

50.2

47.8

50.7

52.5

52.7

51.5

50.5

50.4

47.4

50

52.4

52.1

50.5

50.3

49.4

47

48.4

51.2

50.5

49.4

49.6

48.4

44.5

46.7

46.5

45 45.4 46 46.4

N

γ

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

(b)

3

4

5

6

7

8

9

54.9

56.1

57

56.7

55.8

55.7

56.9

57.8

57.3

56.2

55.3

56.5

57.4

58.5

58.2

57

55.5

54.9

56.7

57.9

58.4

58.1

56.7

55.8

57.1

58.1

58.4

57.6

57

55.7

56.7

58

58.3

57.8

56.6

56

56.8

57.5

57.5

57

56.8

56

55.9

56.8

57.5

56.6

56.4

55.3

55.3

56.1

56.8

56.2

55.4

53.9

54.8

54.2 54.6 54.5 54 54.5 54.3 53.4

54.3

N

γ

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

(c)

2

3

4

5

6

7

8

43.4

43.1

43.8

43.7

43.3

43.4

43.1

43.1

44.1

44.3

43.7

43.6

43.4

43.6

44.6

44.7

44.1

44.1

43.3

43.8

43.8

45.1

45.5

44.6

44.3

43.5

44

44.1

45.6

45.7

44.9

44.6

43.6

44

44.6

45.8

45.7

45.3

44.8

43.7

44.1

44.7

46.1

45.9

45.3

44.9

43.7

44.2

44.2

44.7

45.1

43.8

43.8

43.2

44

42

42.7

42.8

41.6

42.3

42.3

42.3 42.6

N

γ

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

(d)

Figure 7: Four H heatmaps under diferent N and c on (a) AWA2, (b) aPY, (c) CUB, and (d) SUN. Each row and each column denote the
results of diferent N and c, respectively. In each heatmap, brighter colour represents greater H.

Table 1: Statistics of the four benchmark datasets.

Dataset
Number of classes

Attribute
Number of samples

Seen Unseen Total Training Seen testing Unseen testing Total
AWA2 40 10 50 85 23527 5882 7913 37322
APY 20 12 32 64 5932 1483 7924 15339
CUB 150 50 200 312 7057 1764 2967 11788
SUN 645 72 717 102 10320 2580 1440 14340

10 Computational Intelligence and Neuroscience

DPFS is superior to most mapping-based approaches in
the aspects of Au and H, especially on SUN. It indicates that
DPFS has a more vital learning ability on the benchmarks
with a few training samples. And DPFS shows signifcant
improvement of As, Au, and H, especially compared to
generating-based approaches on aPY. It explains that DPFS
makes full use of the feature information of seen classes and
the attribute information, thereby solving the difculty of
classifying the higher proportion of unseen classes and
avoiding mode collapse.

DPFS also experiments on the four benchmarks for
conventional ZSL tasks, where only the synthesized pseudo-
feature samples are fed into the classifer. Table 3 shows ZSL
classifcation performance results. We observe that DPFS
overperforms existing methods on AWA2, aPY, and SUN,
which can also verify that the synthesized pseudo-features
have distinguishable characteristics.

We further demonstrate the advantage of DPFS over SPF
and LIUF. We imitate SPF and LIUF, replacing the strategy
of our pseudo-feature synthesis with the synthesis strategies
of SPF and LIUF to form the reference methods, D-SPF and
D-LIUF, respectively. Meanwhile, the stages of the

embedding module pretraining and classifer training of
D-SPF and D-LIUF are the same as those of DPFS. Table 4
shows the comparison results among D-SPF, D-LIUF, and
DPFS. DPFS gains prominent advantages over D-SPF be-
cause the optimized attribute projection can embed and
project features of seen class into features of unseen class
more accurately, to improve class discriminability. DPFS
also has apparent advantages over D-LIUF especially on
CUB and SUN. DPFS eliminates the irrelevant classes, so it
suppresses negative transfer. In addition, DPFS introduces
the attribute weighting in equation (12) and the outlier
disposing in equation (13), to decrease the confusion be-
tween classes. So, DPFS is superior to D-SPF and D-LIUF in
classifcation.

4.5. Ablation Results. We conducted ablative experiments to
illustrate the infuence of diferent tactics in DPFS. Te
tactics contain the embeddingmodule pretraining (mpt), the
outlier disposing (odi) in equation (13), and the pre-
classifcation loss (pc) in equation (7). Table 5 shows the
results of ablation experiments. Four ablated methods, PFS,
DPFS-1, DPFS-2, and DPFS-3 are all validated. PFS is to
remove all the tactics. DPFS-1, which pretrains the model
only by the feature-attribute distance loss in equation (4), is
to add the mpt tactic. DPFS-2 is to add both the mpt and odi
tactics. And DPFS-3, which pretrains the model by the
distance prediction loss in equation (8), is to add both the
tactics of mpt and pc.

It is important to add the mpt tactic for extracting some
common characteristics between seen classes and unseen
ones because it improves prototype representations and
eliminates the domain shift. Terefore, DPFS-1 performs
obvious progress compared with PFS. PFS-1 is superior to
PFS by 8.6% on AWA2, 8.3% on aPY, 9.3% on CUB, and
9.3% on SUN. On this foundation, DPFS-2 adopts the odi
tactic to eliminate the outliers of candidate pseudo-features.
It boosts the performance on parts of benchmarks. PFS-2 is
superior to PFS-1 by 0.9% on AWA2, and 0.4% on aPY,

Table 2: Quantitative comparisons of average per-class GZSL classifcation accuracy (%).

Method AWA2 aPY CUB SUN
As Au H As Au H As Au H As Au H

†

LATEM [9] 77.3 11.5 20.0 73.0 0.1 0.2 57.3 15.2 24.0 28.8 14.7 19.5
DEM [19] 86.4 30.5 45.1 75.1 11.1 19.4 54.0 19.6 13.6 34.3 20.5 25.6
CPL [8] 83.1 51.0 63.2 73.2 19.6 30.9 58.6 28.0 37.9 32.4 21.9 26.1

DVBE [20] 70.8 63.6 67.0 58.3 32.6 41.8 60.2 53.2 56.5 37.2 45.0 40.7
DCC [21] 82.9 55.1 66.2 74.8 34.4 47.2 57.7 46.5 51.5 41.0 33.1 36.6
HSVA [22] 79.3 57.8 66.9 — — — 59.5 51.9 55.5 39.0 48.6 43.3

†

SEZEL [23] 68.1 58.3 62.8 — — — 53.3 41.5 46.7 30.5 40.9 34.9
DUET [10] 90.2 48.2 63.4 55.6 21.8 31.3 80.1 39.7 53.1 — — —
Inf-FG [26] 63.4 58.3 60.7 — — — 57.0 45.8 50.8 37.1 44.7 40.5
LDMS [25] 71.8 60.9 65.9 66.3 37.4 47.8 61.6 48.0 53.9 36.2 45.6 40.3
FREE [27] 75.4 60.4 67.1 59.9 55.7 57.7 37.7 44.8 40.9
GCF [28] 75.1 60.4 67.0 56.8 37.1 44.9 59.7 61.0 60.3 37.8 47.9 42.2

†

SPF [15] 60.9 52.4 56.3 — — — 63.4 30.2 40.9 59.0 32.2 41.6
TCN [14] 65.8 61.2 63.4 64.0 24.1 35.1 52.0 52.6 52.3 37.3 31.2 34.0
LIUF [16] 83.5 60.6 70.2 79.1 38.2 51.6 54.0 51.2 52.5 40.4 45.7 42.9
DPFS 87.3 61 1.8 83.0 38.6 52. 63.8 54.0 58.5 43.0 49.6 46.1

Table 3: Quantitative comparisons for the ZSL tasks.

Method AWA2 aPY CUB SUN
LATEM [9] 55.8 35.2 49.3 55.3
SJE [4] 61.9 32.9 53.9 53.7
TVN [5] 68.8 41.3 58.1 60.7
CPL [8] 72.7 45.3 56.4 62.2
SEZSL [23] 69.2 — 59.6 63.4
ZVG [12] 69.3 37.4 54.8 59.4
HSVA [22] — — 62.8 63.8
DUET [10] 72.6 41.9 2.4 —
Inf-FG [26] 68.3 — 58.0 61.1
LDMS [25] 72.9 43.7 58.4 59.4
TCN [14] 71.2 38.9 59.5 61.8
LIUF [16] 72.4 59.3 43.7 63.3
DPFS 3.9 61.4 68.0 66.8

Computational Intelligence and Neuroscience 11

respectively. DPFS-3 adopts the pc tactic to predict proto-
types for unseen classes before the classifer training, thus
improving the classifcation performance. PFS-3 is superior
to PFS-1 by 2.9% on AWA2, 6.6% on aPY, 1.5% on CUB, and
2.4% on SUN, respectively. DPFS can cohere all the features
in the same class and therefore avoid outlier interference.
Tus, DPFS adopting the three auxiliary tactics at the same
time makes the best progress in H on the four benchmarks.
And, DPFS is superior to PFS-3 by 1.7% on AWA2, 2% on
aPY, 1.7% on CUB, and 2.6% on SUN.

We visualize features from the embedding module by
t-SNE [41] to further show the tactic efect on the AWA2
benchmark for GZSL tasks. Figure 8 shows the visualization
results. We fnd that DPFS can improve the distinguish-
ability of unseen classes. Meanwhile, it can also maintain the
distinguishability of seen classes according to the compar-
ison results between Figures 8(a), 8(c) and 8(b), and 8(d).
Considering that existing methods [18, 26] do not visualize
all features of both seen and unseen classes, we visualize all
the output features of testing samples from PFS and DPFS in

Table 4: Quantitative comparisons among D-SPF, D-LIUF, and DPFS.

Method
AWA2 aPY CUB SUN

As Au H As Au H As Au H As Au H

D-SPF 81.3 55.4 65.9 64.5 32.9 43.5 0.8 44.0 54.3 45.3 42.4 43.8
D-LIUF 86.1 60.4 71.0 82.5 36.2 50.3 58.7 51.8 55.0 42.4 46.4 44.3
DPFS 87.3 61.0 71.8 83.0 38.6 52.7 63.8 54.0 58.5 43.0 49.6 46.1

Table 5: Ablation results on DPFS.

Method Mpt Odi Pc AWA2 aPY CUB SUN
H H H H

PFS 58.6 35.8 46.0 31.8
DPFS-1 √ 67.2(+8.6) 44.1(+8.3) 55.3(+9.3) 41.1(+9.3)
DPFS-2 √ √ 68.1(+9.5) 44.5(+8.7) 55.2(+9.2) 40.8(+9.0)
DPFS-3 √ √ 70.1(+11.5) 50.7(+14.9) 56.8(+10.8) 43.5(+11.7)
DPFS √ √ √ 71.8(+13.2) 52.7(+16.9) 58.5(+12.5) 46.1(+14.3)

(a) (b)

(c) (d)

(e) (f)

Figure 8: T-SNE visualization of features in 40 seen classes (a, b), 10 unseen classes (c, d) and all 50 classes (e, f) on AWA2 by PFS (a, c, e)
and DPFS (b, d, f) in GZSL tasks. Diferent colours denote diferent classes. It is obvious that DPFS can provide more separable classes.

12 Computational Intelligence and Neuroscience

Figures 8(e) and 8(f), respectively. It is obvious that the
classes characterized by the output features from DPFS is
more separable than those characterized by the output
features from the PFS. DPFS eliminates the confusion be-
tween classes and improves feature distinguishability, thus
achieving a better multiclass classifcation accuracy. Both
seen and unseen classes satisfy the characteristics of intra-
class gather and interclass separability. Terefore, DPFS can
efectively eliminate the domain shift.

5. Discussion

Based on the results above, our model was trained and
evaluated on four benchmark datasets. Our method se-
lected the optimal hyper-parameters for diferent bench-
marks to achieve the best GZSL classifcation performance
compared with most existing methods. Especially on the
benchmarks with a few training samples or with a higher
proportion of unseen classes, DPFS gained the superior
performance because it can use the information of features
and attributes appropriately and avoid mode collapse.
Compared with existing synthesis-based models similar to
DPFS, DPFS can eliminate the introduction of irrelevant
classes and suppress negative transfer. It can also synthesize
candidate pseudo-features and dispose of the outliers to
improve class discriminability.

Furthermore, our model was also trained and evaluated
for ZSL tasks and outperformed competing ZSL methods on
most benchmarks. Besides, we conducted the ablation ex-
periments of DPFS and further explained the performance
gain of each tactic. Distinguishable features can be extracted
and the GZSL performance can be improved with the
embedding module pretraining tactic. On this basis, adding
the preclassifcation tactic can predict prototypes for unseen
classes before the classifer training, thereby improving the
performance and avoiding overftting. Te tactic of the
outlier disposing can further enhance the performance.
Tese are the foundation that outperforms the competing
GZSL methods. Te visualization results have demonstrated
that DPFS has the distinguishability characteristics of both
seen and unseen classes.

6. Conclusion

Tis paper proposed a novel distinguishable pseudo-feature
synthesis (DPFS) method for GZSL tasks. It included the
procedures of base class selection, distinguishable feature
extraction, attribute projection, feature representations, and
outlier disposing. Tese procedures can realize the initiali-
zation, the connection, and the weight updating of the DPFS
model. Terefore, the model can synthesize distinguishable
pseudo-features with attributes of unseen classes and fea-
tures of similar seen classes. Experimental results showed
that DPFS achieved the GZSL classifcation performance
better than existing methods. It indicated DPFS signifcantly
improved class discriminability and restrained negative
transfer, and DPFS also efectively eliminated the domain
shift and the confusion between classes. In the future, we will
synthesize more distinguishable features of unseen classes by

integrating more auxiliary information, such as statistical
features and knowledge graphs, to extend our method into
other applications.

Data Availability

Te dataset AWA2 can be downloaded from https://cvml.ist.
ac.at/AwA2/ or https://academictorrents.com/details/
1490aec815141cdb50a32b81ef78b1eaf6b38b03. Te other
three datasets, aPY, CUB, and SUN can also be downloaded
from https://vision.cs.uiuc.edu/attributes/, http://www.
vision.caltech.edu/datasets/cub_200_2011/, and https://
www.cnblogs.com/GarfeldEr007/p/5438417.html,
respectively.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work is supported by the National Natural Science
Foundation of China (Grant nos. 42276187 and 41876100)
and the Fundamental Research Funds for the Central
Universities (Grant no. 3072022FSC0401).

References

[1] O. Russakovsky, J. Deng, H. Su et al., “Imagenet large scale
visual recognition challenge,” International Journal of Com-
puter Vision, vol. 115, no. 3, pp. 211–252, 2015.

[2] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to
detect unseen object classes by between-class attribute
transfer,” in Proceedings of the 2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 951–958, IEEE,
Miami, FL, USA, June 2009.

[3] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-
based classifcation for zero-shot visual object categorization,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 36, no. 3, pp. 453–465, 2014.

[4] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele, “Eval-
uation of output embeddings for fne-grained image classi-
fcation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition2015, pp. 2927–2936, IEEE,
Boston, MA, USA, June 1015.

[5] H. Zhang, Y. Long, Y. Guan, and L. Shao, “Triple verifcation
network for generalized zero-shot learning,” IEEE Transac-
tions on Image Processing, vol. 28, no. 1, pp. 506–517, 2019.

[6] Y. Xian, B. Schiele, and Z. Akata, “Zero-shot learning-the
good, the bad and the ugly,” in Proceedings of the IEEE
conference on computer vision and pattern recognition2017,
pp. 4582–4591, IEEE, Honolulu, HI, USA, July 2017.

[7] S. Liu, M. Long, J. Wang, and M. I. Jordan, “Generalized zero-
shot learning with deep calibration network,” in Proceedings
of the Advances in Neural Information Processing Systems2018,
pp. 2005–2015, December 2018.

[8] Z. Liu, X. Zhang, Z. Zhu, S. Zheng, Y. Zhao, and J. Cheng,
“Convolutional prototype learning for zero-shot recognition,”
Image and Vision Computing, vol. 98, Article ID 103924, 2020.

[9] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and
B. Schiele, “Latent embeddings for zero-shot classifcation,” in
Proceedings of the IEEE conference on computer vision and

Computational Intelligence and Neuroscience 13

https://cvml.ist.ac.at/AwA2/
https://cvml.ist.ac.at/AwA2/
https://academictorrents.com/details/1490aec815141cdb50a32b81ef78b1eaf6b38b03
https://academictorrents.com/details/1490aec815141cdb50a32b81ef78b1eaf6b38b03
https://vision.cs.uiuc.edu/attributes/
http://www.vision.caltech.edu/datasets/cub_200_2011/
http://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.cnblogs.com/GarfieldEr007/p/5438417.html
https://www.cnblogs.com/GarfieldEr007/p/5438417.html

pattern recognition2016, pp. 69–77, IEEE, Las Vegas, NV,
USA, June 2016.

[10] Z. Jia, Z. Zhang, L. Wang, C. Shan, and T. Tan, “Deep un-
biased embedding transfer for zero-shot learning,” IEEE
Transactions on Image Processing, vol. 29, pp. 1958–1971,
2020.

[11] K. Li, M. R. Min, and Y. Fu, “Rethinking zero-shot learning: a
conditional visual classifcation perspective,” in Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion2019, pp. 3583–3592, IEEE, Seoul, Korea (South), June
2019.

[12] R. Gao, X. Hou, J. Qin et al., “Zero-VAE-GAN: generating
unseen features for generalized and transductive zero-shot
learning,” IEEE Transactions on Image Processing, vol. 29,
pp. 3665–3680, 2020.

[13] Z. Lin, A. Khetan, G. Fanti, and S. Oh, “Pacgan: the power of
two samples in generative adversarial networks,” Advances in
Neural Information Processing Systems, p. 31, 2018.

[14] H. Jiang, R. Wang, S. Shan, and X. Chen, “Transferable
contrastive network for generalized zero-shot learning,” in
Proceedings of the IEEE/CVF International Conference on
Computer Vision2019, pp. 9765–9774, IEEE, Seoul, Korea
(South), 2019.

[15] C. Li, X. Ye, H. Yang, Y. Han, X. Li, and Y. Jia, “Generalized
zero shot learning via synthesis pseudo features,” IEEE Access,
vol. 7, pp. 87827–87836, 2019.

[16] X. Li, M. Fang, H. Li, and J. Wu, “Learning domain invariant
unseen features for generalized zero-shot classifcation,”
Knowledge-Based Systems, vol. 206, Article ID 106378, 2020.

[17] Z. Wang, Z. Dai, B. Póczos, and J. Carbonell, “Characterizing
and avoiding negative transfer,” in Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recogni-
tion2019, pp. 11293–11302, IEEE, Seoul, Korea (South), 2019.

[18] Z. Ji, J. Wang, Y. Yu, Y. Pang, and J. Han, “Class-specifc
synthesized dictionary model for zero-shot learning,” Neu-
rocomputing, vol. 329, pp. 339–347, 2019.

[19] L. Zhang, T. Xiang, and S. Gong, “Learning a deep embedding
model for zero-shot learning,” in Proceedings of the IEEE
conference on computer vision and pattern recognition2017,
pp. 2021–2030, IEEE, Honolulu, HI, USA, July 2017.

[20] S. Min, H. Yao, H. Xie, C. Wang, Z.-J. Zha, and Y. Zhang,
“Domain-aware visual bias eliminating for generalized zero-
shot learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition2020, pp. 12664–
12673, IEEE, Seattle, WA, USA, June 2020.

[21] M. Hou, W. Xia, X. Zhang, and Q. Gao, “Discriminative
comparison classifer for generalized zero-shot learning,”
Neurocomputing, vol. 414, pp. 10–17, 2020.

[22] S. Chen, G. Xie, Y. Liu et al., “Hsva: hierarchical semantic-
visual adaptation for zero-shot learning,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[23] V. K. Verma, G. Arora, A. Mishra, and P. Rai, “Generalized
zero-shot learning via synthesized examples,” in Proceedings
of the IEEE conference on computer vision and pattern rec-
ognition2018, pp. 4281–4289, IEEE, Salt Lake City, UT, USA,
June 2018.

[24] D. Mahapatra, B. Bozorgtabar, S. Kuanar, and Z. Ge, Self-
supervised Multimodal Generalized Zero Shot Learning for
gleason Grading, Domain Adaptation and Representation
Transfer, and Afordable Healthcare and AI for Resource Di-
verse Global Health, , pp. 46–56, Springer, 2021.

[25] X. Li, M. Fang, H. Li, and J. Wu, “Learning discriminative and
meaningful samples for generalized zero shot classifcation,”

Signal Processing: Image Communication, vol. 87, Article ID
115920, 2020.

[26] Z. Han, Z. Fu, G. Li, and J. Yang, “Inference guided feature
generation for generalized zero-shot learning,” Neuro-
computing, vol. 430, pp. 150–158, 2021.

[27] S. Chen, W. Wang, B. Xia et al., “Free: feature refnement for
generalized zero-shot learning,” in Proceedings of the IEEE/
CVF International Conference on Computer Vision2021,
pp. 122–131, IEEE, Montreal, BC, Canada, Oct 2021.

[28] Z. Yue, T. Wang, Q. Sun, X.-S. Hua, and H. Zhang,
“Counterfactual zero-shot and open-set visual recognition,”
in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition2021, pp. 15404–15414, IEEE,
Montreal, BC, Canada, Oct 2021.

[29] D. Mahapatra, S. Kuanar, B. Bozorgtabar, and Z. Ge, Self-
supervised Learning of Inter-label Geometric Relationships for
gleason Grade Segmentation, Domain Adaptation and Rep-
resentation Transfer, and Afordable Healthcare and AI for
Resource Diverse Global Health, pp. 57–67, Springer, 2021.

[30] C. Kemp, J. B. Tenenbaum, T. L. Grifths, T. Yamada, and
N. Ueda, “Learning systems of concepts with an infnite re-
lational model,” Learning systems of concepts with an infnite
relational model, vol. 1, pp. 381–388, 2006.

[31] J. Vanschoren, Meta-learning, Automated Machine Learning,
pp. 35–61, Springer, Cham, 2019.

[32] Q. Cai, Y. Pan, T. Yao, C. Yan, and T.Mei, “Memorymatching
networks for one-shot image recognition,” in Proceedings of
the IEEE conference on computer vision and pattern recog-
nition2018, pp. 4080–4088, IEEE, Salt Lake City, UT, USA,
June 2018.

[33] J. Li, M. Jing, K. Lu, Z. Ding, L. Zhu, and Z. Huang,
“Leveraging the invariant side of generative zero-shot
learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition2019, pp. 7402–
7411, IEEE, Seoul, Korea (South), 2019.

[34] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” Journal of the Royal Statistical Society -
Series B: Statistical Methodology, vol. 67, no. 2, pp. 301–320,
2005.

[35] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimi-
zation, Cambridge University Press, 2004.

[36] A. Sheshadri, I. Endres, D. Hoiem, and D. Forsyth, Describing
Objects by Teir Attributes, pp. 1778–1785, Computer Vision
and, 2012.

[37] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie,
Te Caltech-Ucsd Birds-200-2011 Dataset, 2011.

[38] G. Patterson and J. Hays, “Sun attribute database: discovering,
annotating, and recognizing scene attributes,” in Proceedings
of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2751–2758, IEEE, Providence, RI, USA, June
2012.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition2016, pp. 770–778,
IEEE, Las Vegas, NV, USA, June 2016.

[40] I. Loshchilov and F. Hutter, “Fixing weight decay regulari-
zation in Adam,” in Proceedings of the ICLR 2018 Conference
Blind Submission, Vancouver, Canada, February 2018.

[41] L. Van der Maaten and G. Hinton, “Visualizing non-metric
similarities in multiple maps,” Machine Learning, vol. 87,
no. 1, pp. 33–55, 2012.

14 Computational Intelligence and Neuroscience

