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Abstract—As a non-invasive approach, surface 

electromyographic (sEMG) signal has great potential for 

application in human-robot interfaces, such as the upper-limb 

exoskeleton rehabilitation device. However, due to the differences 

in activity level of muscles, there exists high inter-subject 

variability. In this work, the influence of inter-subject variability 

for elbow continuous motion is evaluated through a shallow 

neural network (BPNN), and user-dependent and 

user-independent models are established respectively. In 

user-dependent model, training and testing sets are from the 

same subject, new set of the same person as during training is 

used as the input of network. The user-independent models are 

constructed by the same user and another additional user to 

determine inter-subject variability in model construction. To 

evaluate the degree of inter-subject variability, evaluation 

criteria and statistical method are adopted. Through the 

prediction results, and further the value of evaluation criteria 

and the plot of statistical method, it can be seen that the 

inter-subject variability on sEMG has a huge impact on the 

regression of elbow continuous angle, which can provide 

reference for the future study of building sEMG generalized 

modeling to estimate elbow angles. 

Index Terms—surface electromyographic (sEMG), 

inter-subject variability, joint continuous motion, neural network 

I. INTRODUCTION  

Stroke is an acute cerebrovascular disease, which is 

stroke is the second-leading cause of death and the 

third-leading cause of death and disability combined in the 

world. 20% of stroke patients fully recover from physical and 

mental impairment, 60% suffer from impairment of motor, 

language, sensory and cognitive systems, and the remaining 

20% die in [1]. Hemiplegia is a condition caused by a 

stroke-related neurological deficit that reduces sensory and 

motor abilities on one side of the body. It has been found that 

80% of stroke survivors suffer from hemiplegia. The main 

consequence of this disorder is usually weakness or inability 

to exercise on one side of the body. Upper extremity 

hemiparesis is the most common post-stroke disability[2], 

leading to significant difficulty when carrying out their 

activities of daily living (ADL).  

Rehabilitation training is an effective method to improve 

the physical function for stroke patients with upper limb 

hemiparesis [3]. Robot-assisted therapy of upper limbs has 

become a safe and feasible assisted rehabilitation therapy after 

stroke [4]. Over the last years, robot-assisted rehabilitation 

devices have been designed to provide intensive and repetitive 

robot-assisted rehabilitation[5][6], which can bring advantages 

over traditional rehabilitation techniques [7].  

For Upper-limb robot-assisted therapy, the design of 

Human-Robot Interfaces (HRIs) is vital [8]. The 

intention-based recognition controls the device to facilitate the 

execution of movements. Different approaches based on 

invasive and non-invasive approaches have been proposed to 

design HRIs in recent years. Invasive methods implant 

electrodes directly into the brain or other electrically excitable 

tissue to record signals from the peripheral or central nervous 

system or muscle, this kind of methods have high resolution 

and accuracy[9]. Non-invasive methods include the follows: 

electroencephalography (EEG) [10], electrooculography (EOG) 

[11], brain-machine interfaces [12 13], surface 

electromyography (sEMG) [14][15] and so on. sEMG a stable 

non-invasive approach, which has been successfully adopted 

for controlling robotic-assisted prostheses and rehabilitation 

exoskeleton devices due to its inherent intuitiveness and 

effectiveness [16]. Compared with EEG signals, sEMG signals 

are easy to obtain and process, and can provide effective 

information about the movement a subject. However, due to 

differences in the muscle activity levels[17][18], there exist 

high inter-subject variability, which limits the use of sEMG. 
In this paper, we focused on the evaluation of inter-subject 

variability and its influence on the regression of continuous 
elbow motion. Based on the inter-subject variability regarding 
sEMG, its impact on continuous motion estimation of the 
elbow joint in rehabilitation is further evaluated. Myo 
armband is used as the sEMG acquisition device, and the 
signals after preprocessing and feature extraction are used as 
the input of Back Propagation Neural Networks (BPNN), then 
user-dependent and user-independent models are established 
respectively. Further quantitative analysis is performed by the 
evaluation criteria of MSE and MAE, and statistical analysis is 
performed through Bland-Altman. The experimental results 
demonstrate that inter-subject variability makes the elbow joint 
motion estimation with a large error, which should be 
considered in the future for building generalized model 
(independent of subject) used in the prediction of the joint 
motion angle. 

The rest of the paper is organized as follows. The 

experimental protocol and processing methods are illustrated 

in Section II. In Section III, the results and discussion are 

reported. Finally, the conclusion is presented in Section IV. 



 

II. MATERIAL AND METHODS 

In this section, we describe the characteristics of the 

experimental device, the processing process of sEMG, the 

modeling process using BPNN and the evaluation criteria 

respectively.  

A. Experimental protocol  

In this study, six healthy participant (4 male and 2 

females) age ranging from 20 to 30 years old (mean = 23.7 

years; standard deviation [SD] = 1.4 years) are selected. All 

the participants have no musculoskeletal disorders at the time 

of experiments. Before the test, each participant is introduced 

the experimental protocol and signed the informed consent. 

The upper and forearm should be kept as relaxed as possible to 

avoid muscle tension which could introduce offsets to the 

signal. Furthermore, the wrist of subject should be kept along 

with the forearm, ensuring that the elbow joint moves in only 

one degree of freedom (DOF) in the vertical plane. The 

experiment is repeated six times for each subject, with a 

one-minute rest between adjacent experiments to avoid muscle 

fatigue. During the sEMG acquisition process, the upper arm 

naturally hangs down, the forearm starts from the natural 

drooping state, moves around the elbow joint, and returns to 

the natural drooping state after one minute of motion. 

The upper limb’s sEMG data of each subject is acquired 

using a wearable armband sensor (Myo armband, as shown in 

Fig. 1) developed by Thalmic Labs Inc, which is a 

commercially available device that includes 8 equidistance 

sEMG sensors [19]. The acquisition diagram of sEMG and 

angle is shown in Fig. 1b. The MYO armband is placed at the 

same location of each subject’s forearm like that the fourth 

sensor is in line with the middle finger of hand. With the help 

of a custom — written script via Bluetooth communication, 

the sEMG data-unitless 8-bit unsigned integer values are 

sampled at 200 Hz and directly streamed to the Matlab’s 

(MATLAB 2020b, MathWorks) workspace, the sEMG data 

results from a proprietary conversion algorithm from mV. 

Then the raw sEMG can be assessed through the Myo 

software development kit (SDK). An angle sensor (JY901, 

WIT motion) is attached on the forearm, the angle obtaining 

through it as the target value, and the sampling frequencies of 

angle sensors is set to 20 Hz. 

B. Data preprocessing and feature extract 

sEMG signal is a kind of weak and easily interfered 

bioelectrical signal. The inherent noise in equipment and 

inherent non-stationarity of signal can both degrade the quality 

of the acquired signal, so the data preprocessing step is 

indispensable to obtain high-quality signals. The acquired 

sEMG data has been normalized to [-1 1] through MYO SDK, 

then are high-pass filtered at 20 Hz (4th-order Butterworth 

high-pass filter, shown in Fig. 2a) to remove DC offsets and 

the noises in the low-frequency range, and notch filtered at 50 

Hz (1th-order Butterworth band-stop filter, shown in Fig. 2b) 

to avoid power-frequency interference.  

After filtering, considering that sEMG signals are highly 

non-stationary, so the sliding window method is used to 

segment the sEMG signal to facilitate the analysis of signals 

with high frequencies. Through sliding window method, the 

raw sEMG signal will be divided into separate windows. Due 

to the real-time characteristics of Human-Robot Interfaces 

(HRIs), the total time of segment length and processing time 

of generating estimation control commands should not exceed 

300 ms [20]. At the same time, the window segmentation 

length should not be too short, because with the decrease of 

 
Fig. 2 Butterworth filter (a) high-pass filter (b) band-stop filter 

 
Fig. 1 (a) The experimental setup used for collecting sEMG signals (b) MYO armband showing the sensor sequences. 



the window segmentation length, the deviation and variance 

will increase, which will reduce the availability of the system. 

In order to introduce more samples, fixed-size overlapping 

sliding window (FOSW) method is used. That is, the sliding 

stride is smaller than the window size, resulting in two 

adjacent segments overlapping with each other. In this study, a 

shifting analysis window with a time length of 250ms (50 

sample points) and an increment of 100 ms (150 ms 

overlapping) is used to segment the sEMG signals into a series 

of analysis windows (as shown in Fig. 3). And to make sure 

that sampling points of sEMG are consistent with that of the 

elbow joint angles obtained by the angle sensor, the angles are 

also divided into separate windows with a time length of 25ms 

(5 sample points) and an increment of 10 ms (15 ms 

overlapping). 

Further, to estimate the angle of joint motion, different 

features should be extracted from each separate window to 

construct feature vector. The feature vector can represent the 

original sEMG signal information, which is vital to accurate 

recognition. There are several methods of feature extraction, 

such as time domain, frequency domain, time-frequency 

domain, etc. Time domain information describes the signal 

waveform with time as a variable, and is closely associated to 

signal amplitude. Frequency domain features are more used to 

analyze the fatigue degree of muscle. Time-frequency domain 

features can better induce transient effects of muscular 

contractions. Considering that time domain features is closely 

associated to sEMG amplitude, which reflects the angle 

information. Hence, five time-domain simple features 

including Mean Absolute Value (as (1) shows), Zero 

Crossings(as (2) shows), Slope Sign Changes (as (3) shows), 

Root mean square(as (4) shows), and Integrated Absolute 

Value (as (5) shows) are used in our study. 

Mean Absolute Value (MAV)  

It is evaluated by taking the average of each signal within an 

analysis window, defined as: 
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where N is the number of samples in a separate window, xk 

represents the kth sample within an analysis window. 

Zero Crossings (ZC) 

It represents the number of times signal xk crosses zero within 

an analysis window; it is a simple measure associated with the 

frequency of the signal. The ZC count increased by one if: 
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Slope Sign Changes (SSC) 

It is related to signal frequency and is defined as the number 

of times that the slope of the sEMG waveform changes sign 

within an analysis window. The SSC count increased by one 

if: 
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Root mean square (RMS) 

It refers to the effective value of muscle discharge within an 

analysis window, and its change depends on the change of 

sEMG amplitude, defined as: 
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Integrated Absolute Value (IAV) 

It represents the sum of the absolute values of signal 

amplitude in a separate analysis window, defined as: 

 
1

| |
N

k

k

IAV x
=

=    (5) 

Based on the analysis window with a time length of 

250ms and an increment of 100 ms (150 ms overlapping), 

sEMG activation curve can be obtained through extracting 

from each window the following features: MAV、ZC、

SSC、RMS、IAV. 

C. Continuous joint motion estimation based on BPNN 

After getting the features for all subjects, angle learning 

and estimation implemented through machine learning is the 

next step that need to be realized. In this paper, BPNN is used 

for angle regression and prediction, which is one of the 

well-known algorithms in neural networks. The network 

consists of three layers: input layer, hidden layer and output 

layer, where the hidden layer transmits important information 

between the input layer and the output layer. The process of 

BP neural network is mainly divided into: (1) signal forward 

propagation; (2) error back propagation. According to the 

gradient descent method, the loss function is continuously 

reduced, so that the network can get closer and closer to the 

real relationship. The model of BPNN is shown in Fig. 4, 

which includes the neuronal structure and the network 

structure. 

The feature sequences form the input data X of BPNN 

and the joint angle Y is the output signal. In this study, we 

suppose that 

 

1 8

1

          

.

       1:[ ,.

 

.., ,... ]

.

8

, , ,

          

[ , ]

[ , ., ,     1. ] :..

i

i i i i i i

k N

C

X x x x

x MAV

Y y

i

ZC SS RM

y

S A

k Nx

I V

=


=
 =

=

 =

  (6) 

 
Fig. 3 Slidding window approach for basic measurements extraction 

illustrated for the case of the sEMG signal. 

 



Where i represents the ith channel of MYO armband, k 

represents the kth point of the output, and N is the 

total number of the point of the output. 

The Levenberg-Marquardt algorithm is adopted as the 

training algorithm. Although the algorithm occupies a larger 

amount of memory, it takes less time. When generalization 

stops improving, training stops automatically, as indicated by 

an increase in the mean squared error of validation sample. 

Through the neural network, estimated angle of elbow motion 

can be calculated, but the obtained angle curve in not smooth. 

Further, the output of neural network is filtered using an 

8-point sliding window. After sliding window filtering, a 

smooth angle sequence can be obtained, which can further 

used in HRIs through sEMG. 

D. Evaluation criteria 

In this paper, the mean square error (MSE), Regression 

value (R), mean angle error (MAE) and Bland-Altman (B&A) 

statistical analysis is introduced to evaluate the performance of 

estimation. MSE and R is the evaluation parameter during 

modeling. MSE is the average squared error between the 

estimated angles and the target angles, shown in (7). The 

lower the value of MSE, the better the estimation effect. R 

measure the correlation between the estimated angles and the 

target angle. The higher the value, the better the estimation 

effect. MAE is the average error between output angles and 

target angles, shown in (8). The lower the value of MAE, the 

better the estimation effect. The B&A plot analysis is adopted 

to evaluate the bias between the estimated and the target 

angles. 
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Where yi is the actual joint angle at ith data point and y
_

i 

represents the estimated angle at ith data point, and N is the 

total number of data points. 

III. RESULTS AND DISCUSSION 

In this section, we present and discuss the model obtained 

with BPNN. To verify the effect of inter-subject variability 

during continuous motion of elbow, the prediction comparison 

of user-dependent and user-independent model is provided. 

Finally, we present the results of the evaluation using 

indicators. 

A. The performance of Modeling 

For each subject (A-F), the first five sets of data are used 

for modeling, and the last one set of each subject is as the 

additional test. Samples are randomly divided into training set, 

validation and test set, the ratio is 70%:15%:15%. Training R, 

validation R, and test R are recorded during the training 

process (TABLE I). The MSE and R of additional test are the 

evaluation of angle estimation effect (TABLE I). Across all 

the subjects, the training R are all greater than 95%, the R of 

additional test are also greater than 95%, and the MSE all less 

than 250. 

Taking subject A as an example, the regression figure of 

is shown in Fig. 5. Fig. 5(a) is the regression value during 

training,  Fig. 5(b) is the regression  value of additional test 

 
Fig. 4 BPNN (a) Neuronal structure (b) network structure 

 

TABLE I THE ESTIMATED PERFORMANCE OF BPNN MODEL FOR 

EACH SUBJECT 

subject 
Training 

R 

Validation 

R 
Test R 

Additional test 

MSE R 

A 0.9634 0.9631 0.9575 222.5428 0.9627 

B 0.9753 0.9655 0.9588 228.8031 0.9567 

C 0.9725 0.9490 0.9503 245.1478 0.9572 

D 0.9766 0.9483 0.9575 239.5296 0.9507 

E 0.9731 0.9716 0.9723 131.4279 0.9713 

F 0.9738 0.9561 0.9530 249.1167 0.9540 

 

 
Fig. 5 The regression of BPNN model (a) the regression value during 

training (b) the regression value of additional test 

 

 
Fig. 6 The prediction results of angle (a) the estimated angle before and 

after smoothing (b) comparison of estimated angle and actual angle 



(A#6 representing the sixth time experiment of subject A). 

The prediction results can be seen from Fig. 5 intuitively 

which compared the motion tracking of estimated and target 

angle. And through the comparison before and after sliding 

window filtering (Fig. 6), it can be found that the filtering 

effect is very obvious, and the filtered output can be further 

used in HRIs.  

B. The performance of Modeling Estimation result of 

user-dependent and user-independent model 

In the above section, the BPNN models (built with the 

first five sets) for each subject have been established. In this 

section, the inter-subject variability will be illustrated using 

user-dependent and user-independent model. 

Plan A (user-dependent): For the user-specific, individual 

models are trained and evaluated for each of the users using 

their own data. That is, the model established by each user's 

own first five sets of data are used to predict the user's new 

data (the sixth set of data). 

Plan B (user-independent): Select one user as the existing 

subject, and the remaining users take turns as new subjects. 

 
Fig. 7 Estimation comparison of user-dependent and user-independent model. (a) estimated angle of subject A using its own model, (b) estimated angle 

of subject A using the model of subject B, (c) estimated angle of subject A using the model of subject C, (d) estimated angle of subject A using the 
model of subject D, (e) estimated angle of subject A using the model of subject E (f) estimated angle of subject A using the model of subject F 

TABLE II ESTIMATED ANGLE EVALUATION OF SUBJECT A FOR USER-DEPENDENT AND USER-INDEPENDENT MODEL 

Criteria Model of A Model of B Model of C Model of D Model of E Model of F 

MSE 222.5428 895.8131 727.0325 2.4547e+03 2.4756e+03 2.2192e+03 

MAE 12.3478 24.0627 22.2568 40.5557 42.1468 37.9354 

 
Fig. 8 The Bland-Altman plots of estimated angle and the actual angle. (a) the estimated results of A#6 using model A (b) the estimated results of A#6 

using model B (c) the estimated results of A#6 using model C (d) the estimated results of A#6 using model D (e) the estimated results of A#6 using 

model E (f) the estimated results of A#6 using model F 



That is, the model ith subject is used to predict the angle of the 

jth subject ( i j ).  

Take the first subject (subject A) as an example, the 

estimated result of angle using its own model is shown is Fig. 

7(a), and Fig. 7(b-f) are the estimated results of angle using  

model of subject B, C, D, E, F respectively. As can be seen 

from Fig. 7(a), when estimation of joint motion angle for a 

specific subject, well prediction result can be obtained by 

using its own model. However, if the data used for modeling is 

not from the same subject as the prediction process, there exist 

a large error compared to the target value, as shown in Fig. 

7(b-f).  

C. Evaluation based on inter-subject variability 

Through the above, intuitive observation can be made. 

Next, specific indicators and statistical methods will be used 

for further evaluation. In order to evaluate the prediction 

accuracy, MSE and MAE are employed in this study which 

can reflect the error and relationship between the prediction 

results and actual angle.  

TABLE II record the evaluation results of MSE and 

MAE criteria of subject A, using model of subject A-F 

respectively, and Fig. 8 plot the corresponding B&A. As can 

be seen from TABLE II and Fig. 8, only the prediction angle 

corresponding to model A (that is, the training sEMG data and 

test sEMG data are from the same subject) shows satisfactory 

prediction effects. That is, the model trained by samples of 

specific users always perform badly when it is applied to 

another. The reason of the poor detection result is due to the 

inter-subject variability on sEMG. This paper only evaluates 

the inter-subject variability, and does not consider the 

intra-subject variability. In future research, we will further 

consider both the inter-subject variability and the intra-subject 

variability. 

IV. CONCLUSION 

In this paper, evaluating the effect of inter-subject 

variability on continuous elbow motion is the focus. Through 

the comparison of prediction results of user-dependent model 

and user-independent model, it can be found that the estimated 

angles using user-independent model have a poor detection 

result. It can even be said that a model that established using 

the sEMG data of a specific subject is almost inapplicable to 

another subject, which provide reference for the future 

research on the generalized model for elbow angle estimation. 

In order to improve the generalizability of the model, it is 

necessary to reduce or remove the impact of inter-subject 

variability. On the one hand, data augmentation is needed. On 

the other hand, the research on combining transfer learning 

will be further considered, such as using domain adaptation to 

map different individual features into a common space to 

improve model adaptability. 
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