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 Abstract –With the development of vascular interventional 
surgical robots, higher and higher requirements for the safety of 
surgical robots are put forward. For the master-slave surgical 
robot, the physical tremor of the doctor's hand will affect the 
safety of the operation, and may even lead to the failure of the 
operation if not handled properly. In the process of vascular 
interventional surgery, involuntary hand tremor may occur due 
to the doctor's long time hand manipulation. For the 
identification and filtering of physiological tremor, an improved 
adaptive Kalman filter algorithm and a new zero-phase filter are 
used to filter out the wrong operation caused by physiological 
tremor. Among them, the new zero-phase filter identifies the 
tremor signal, and the improved adaptive Kalman filter obtains 
the tremor signal at this moment according to the identified 
tremor signal at the previous moment, and applies the signal 
with the same phase and opposite amplitude to the control 
signal, so as to achieve the purpose of filtering physiological 
tremor. Two combined functions are used to simulate the 
doctor's hand tremor signal and operation signal, which 
superimpose the actual operation signal of the doctor's hand. 
Through simulation comparison, it is found that the improved 
adaptive Kalman filter can have better filtering effect than 
traditional low-pass filtering and traditional Kalman filtering, 
and can better filter out physiological tremor. The proposed 
method has significantly improved the safety requirements of 
vascular interventional surgery robots.  
 Index Terms –Adaptive Kalman Filtering, New zero-phase 
filter, physiological tremor，low pass filtering 

I.  INTRODUCTION 

As a minimally invasive surgery, vascular interventional 
surgery has been widely used in various cardiovascular and 
cerebrovascular diseases. At present, there are many types of 
vascular robots, and the general application scenarios are: 
treatment, surgery, rehabilitation and rehabilitation care. 
Today's development of robots has had a huge impact on the 
medical field, and has become a hot field in the medical field 
today. Therefore, robots in the medical field are constantly 
increasing and constantly being updated. Since 1990, a series 
of vascular interventional surgery robots have been developed. 
overcome the shortcomings mentioned above and promote the 
promotion of vascular interventional surgery. Catheter 
Robotics has developed the Amigo Remote Catheter System, 
a surgical robotic system for remotely pushing catheters. 

Corindus developed the CorPath 200 system, the earliest 
clinical trial of a robotic system for vascular intervention 
using passive catheter technology[1][2]. 

The robotic vascular interventional surgery system 
mainly consists of two parts: the main side and the slave side. 
The doctor performs surgery on the main side outside the 
operating room, and the computer collects the surgical 
information of the doctor on the main side and transmits it to 
the slave side. The computer replaces the doctor to complete 
the interventional surgery and avoids the doctor receiving 
radiation[3]. 

However, in practical applications, the accuracy of 
surgery is not only dependent on surgical equipment. The 
final outcome of a surgery is influenced by many factors, the 
most important of which is the decision of the surgeon and his 
careful operation. When the surgeon performs an operation 
for too long, the shaking of the hand can affect the accuracy 
of the hand movement, which may lead to misoperation. In 
order to solve the jitter signal problem caused by hand jitter, 
an algorithm developed at MIT filters the tremor signal based 
on a low-pass filter. Because the frequency of tremor signal is 
between 8-12Hz, low-pass filtering can be used to filter the 
tremor signal, but there is no obvious FAZHI between tremor 
signal and actual motion signal，Therefore, the use of low-
pass filtering may lead to loss of motion signals. Therefore, 
this method is only suitable for simple signal filtering, and 
cannot effectively preserve the motion signal while filtering 
the tremor signal[4]. 

In addition, the University of Kansas proposed a third-
order AR model based on real-time modeling and prediction 
to filter tremor signals. However, due to the complex 
modeling and prediction process, this method is only suitable 
for real-time tremor signals in small systems. However, the 
disadvantage of this method is that the linear Gaussian 
random model is used, which simplifies the mathematical 
expression of the tremor and cannot describe the essential 
characteristics of the tremor signal[5]. 

Yang Chenghao proposed a study on the mechanism of 
minimally invasive surgical robot tremor and its suppression 
method. The paper compared most of the existing 



defibrillation algorithms and found that most of the existing 
tremor filtering algorithms will There are several common 
problems： 

(1) Time lag is inevitably introduced when designing the 
filter, which reduces the real-time performance of the system. 

(2) The filters based on learning algorithms cannot avoid 
the training period. Although the effect is excellent, the 
computer with faster calculation speed is required as the host 
computer, which leads to high cost. 

(3) Cannot handle complex signals with uncertainty. 
Based on the above problems, a defibrillation strategy is 

designed, which uses a novel zero-phase filter and adaptive 
Kalman filter to achieve the purpose of filtering tremor 
signals[6]. 

II. INTERVENTIONAL SURGICAL ROBOTIC SYSTEM 

The role of vascular interventional surgery robot is to 
help doctors stay away from radiation and perform 
interventional surgery by pushing, pulling, rotating and other 
actions. Therefore, the master-slave operation of the robot is 
the most practical way. While operating the robot with force 
feedback, the doctor can have a more realistic feeling. 
Therefore, the precision and stability of the control system are 
highly required for the vascular interventional surgical robot. 
The control block diagram of the laboratory's control system 
is shown in Figure 1[7][8]. 

The main end consists of two parts: a catheter 
manipulator and a guide wire manipulator. The catheter 
guidewire can be rotated, advanced and retracted by 
manipulating the catheter guidewire manipulator at the main 
end. [9]At the same time, the master end has force feedback. 
When the catheter at the slave end touches the blood vessel 
wall, the force returned from the slave end will be amplified 
and then transmitted to the slave end, so that the doctor's hand 
can feel the resistance. The actual picture of the master 
terminal is shown in Figure 2(a). 

The slave end is made of a guide rail, and a slider and a 
motor are installed above the guide tube. The signal input 
from the master end drives the motor to rotate, thereby driving 
the slider to move forward and backward on the guide rail to 
realize the advance and retreat of the guide wire of the guide 
wire. The physical diagram of the slave terminal is shown in 
Figure 2(b). 

This system is the operating principle of the vascular 
interventional surgery robot of our laboratory platform. The 
movement of the slave end is realized by operating the master 
end, so as to achieve the purpose of operating the robot for 
surgery. During the operation, the tremor caused by muscle 
tension threatens the safety of the operation, which may cause 
misoperation and lead to the failure of the operation[10]. The 
innovation of this paper is to eliminate the periodic jitter 
caused by muscle tension, and at the same time ensure the 
safe operation of the doctor as much as possible. In order to 
eliminate the periodic jitter of the cycle, thereby improving 
the safety of the operation, ensuring the smooth operation of 

the operation and the health of the patient. The most basic 
requirement is that the surgical robot system has the function 
of signal recognition and shaking, which can accurately 
identify the shaking part of the main-side signal operation 
signal. It predicts the jitter signal in the next second, 
superimposes the signal with the same phase and opposite 
value to the filtered signal, and then transmits it to the slave 
end of the surgical robot to achieve the purpose of filtering the 
jitter signal[8]. 

The A new type of zero-phase filter is used to identify 
the jitter signal. The new type of zero-phase filter consists of a 
high-pass filter and a low-pass filter. Can accurately identify 
the 8-12Hz signal. For the identified jitter signal, the adaptive 
Kalman filter is used to perform the optimal estimation at the 
next moment, and then the signal of the opposite phase and 
the same amplitude is superimposed on the control signal to 
achieve the purpose of filtering the jitter signal. The algorithm 
block diagram is shown in Figure 3 Show[9]. 

 
Fig.1 Control System of Vascular Interventional Surgical Robot. 

 

（a） The master structure 

 

（b）The Slave structure 

Fig.2 The structure of vascular interventional surgery robot 



 

Fig.3 Adaptive Filtering Algorithm Block Diagram 

III. FILTERING ALGORITHM 

A. Zero phase filter 

In the process of proposing the tremor signal, it is only 
necessary to ensure that there is no phase distortion in the 
frequency band where the tremor signal is located. According 
to the foregoing, the zero-phase wave filter only considers the 
phase change of the signal whose frequency band is 
distributed in 8-12Hz. The zero-phase filter consists of a 
traditional high-pass filter and a traditional low-pass filter 
cascaded. The phase lead caused by the high pass filter can be 
cancelled by the phase lag caused by the low pass filter. By 
reasonably designing two filters, the phase distortion in the 8-
12Hz frequency band can be controlled to almost zero. The 
realization principle of the new zero-phase filter is shown in 
Figure 4[10]. 

 
Fig.4 Schematic diagram of the realization of the new zero-phase filter 

The high-pass filter filters the lower frequency desired 
signal and produces a phase lead, and the low-pass filter 
removes some irrelevant interference and produces a phase 
lag to cancel the phase lead produced by the high-pass filter. 
The cascade of the two makes the output tremor signal 
without phase distortion[14]. 

B. Kalman filter tremor filtering algorithm 
The Kalman filtering process can be divided into a state 

process and a measurement process: 
Status process: 

𝑋(𝑘) = 𝐴𝑋(𝑘 − 1) = 𝑤(𝑘) (1) 
Measurement process: 

𝑍(𝑘) = 𝐻𝑋(𝑘) + 𝑣(𝑘) (2) 

In the above formula, X(k) is the state of the tremor 
signal in the master operator, the state matrix A represents the 
state change, the vector Z(k) is the signal measurement result, 
the vector w(k) is the state noise, and the vector v(k) is the 
measurement noise, in the traditional Kalman filter, we 
assume that w(k) and v(k) are independent Gaussian white 
noise with mean zero[11]. 
That is, w(k) and v(k) satisfy the following conditions: 

{
 
 

 
 𝐸[𝑤𝑘𝑤𝑖

𝑇] = {
𝑄, 𝑖 = 𝑘
0, 𝑖 ≠ 𝑘

𝐸[𝑣𝑘𝑣𝑖
𝑇] = {

𝑅, 𝑖 = 𝑘
0, 𝑖 ≠ 𝑘

𝐸[𝑤𝑘𝑣𝑖
𝑇] = {0, ∀𝑖. 𝑘

(3) 

where Q is the process noise covariance and R is the 
measurement noise covariance[16]. 

The filtering process of the Kalman filter is divided into 
two steps: 

Prior estimates:
𝑋̂(𝑘|𝑘 − 1) = 𝐴𝑋̂(𝑘 − 1|𝑘 − 1) (4) 

𝑃(𝑘|𝑘 − 1) = 𝐴𝑃(𝑘 − 1|𝑘 − 1)𝐴𝑇 + 𝑄 (5) 
        Measurement update: 

𝐾(𝑘) = 𝑃(𝑘|𝑘 − 1)𝐻𝑇[𝐻𝑃(k|k − 1)HT + R]−1 (6) 
𝑋̂( 𝑘 ∣ 𝑘 ) = 𝐴𝑋̂( 𝑘 ∣ 𝑘 − 1 ) + 𝐾(𝑘) (𝑍(𝑘) + 𝐻𝑋̂( 𝑘 ∣ 𝑘 − 1 )) (7) 

𝑃( 𝑘 ∣ 𝑘 ) = (𝐼 − 𝐾(𝑘)𝐻)𝑃( 𝑘 ∣ 𝑘 − 1 ) (8) 
𝑋̂(𝑘 ∣ 𝑘 − 1) is the state vector at time k estimated from time 
k-1,  𝑋̂(𝑘 ∣ 𝑘) is the updated state vector at time k based on 
the estimated state vector, P(k|k-1) is the estimated covariance 
at time k according to time k-1, P(k|k) is predict the updated 
time-k covariance from the estimated state vector, K(k) is the 
Kalman gain at time-k, Q is the process noise covariance, and 
R is the measurement noise covariance[17]. 
C. Adaptive Kalman Filtering  

The traditional Kalman filter assumes that both the 
process noise and the measurement noise of the system obey a 
Gaussian distribution with a mean of 0, that is, Q and R are 
fixed values. For linear systems, such an assumption is 
reasonable, but for nonlinear systems, process noise and 
measurement noise are not strictly Gaussian with mean zero. 
At this time, if Q and R are regarded as fixed values, the ideal 
filtering effect cannot be achieved[12]. 

The simplified Sage-Husa adaptive filtering algorithm 
is as follows: 

𝑿̂𝑘,𝑘−1 = 𝝓𝑘,𝑘−1𝑿̂𝑘−1 (9) 
𝑋̂𝑘 = 𝑋̂𝑘,𝑘 = 𝑋̂𝑘,𝑘−1 + 𝐾𝑘(𝑍𝑘 −𝐻𝑘𝑋̂𝑘,𝑘−1) (10) 
𝑷𝑘,𝑘−1 = 𝝓𝑘,𝑘−1𝑷𝑘−1𝝓𝑘,𝑘−1

𝜏 + 𝑸𝑘−1 (11) 

𝑲𝑘 = 𝑷𝑘,𝑘−1𝑯𝑘
𝜏 [𝑯𝑘𝑷𝑘,𝑘−1𝑯𝑘

𝜏 + 𝑹̂𝑘]
−1

(12) 

𝑹̂𝑘 = (1 − 𝑑𝑘)𝑹̂𝑘−1 + 𝑑𝑘[(𝑰 − 𝑯𝑘𝑲𝑘)𝜺𝑘𝜺𝑘
T ×

(𝑰 − 𝑯𝑘𝑲𝑘)
T +𝑯𝑘𝑷𝑘𝑯𝑘

T]
(13) 

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘,𝑘−1(𝑰 − 𝑲𝑘𝑯𝑘)
T +

𝑲𝑘𝑹̂𝑘−1𝑲
T(𝑘)

(14) 

In the formula, dk is the forgetting factor, dk= (1 - b) / (1 
- bk+1),0<b<1, Pk is the filter error variance matrix. 

Kk in the formula needs to know 𝑹̂𝑘, to get 𝑹̂𝑘 to 
know Pk, to get Pk to know Kk. 

Therefore, the simplified Sage-Husa filtering algorithm 
actually has an infinite loop, which increases the calculation 
amount of the system, and in general, the interference of the 
system has a certain stability[19]. From the perspective of 



preventing filter divergence, new observation data should be 
strengthened. role in the current filter. The motion state of the 
slider at adjacent moments does not change much, and the 
outside world does not change much, so it can be considered 
that the probability distribution of the observed noise at 
adjacent moments is the same. Therefore, Rk-1 can be used 
instead of Rk, which can be simplified as the gain matrix Kk 
in the algorithm becomes:  

𝑲𝑘 = 𝑷𝑘,𝑘−1𝑯𝑘
𝜏 [𝑯𝑘𝑷𝑘,𝑘−1𝑯𝑘

𝜏 + 𝑹̂𝑘−1]
−1

(15) 

After the gain matrix is obtained, the estimation error 
square matrix and the observation noise can be calculated, so 
that the problem of infinite loop will not occur. It can be seen 
from the improved algorithm that 𝑹̂𝑘−1  is required to 
calculate Kk, Pk-1 is required to calculate 𝑹̂𝑘−1, and Kk-1 is 
required to calculate Pk -1. When the initial conditions are 
known, the algorithm will can be well implemented. The 
improved Sage-Husa filtering algorithm solves the infinite 
loop problem in the simplified Sage-Husa filtering algorithm, 
and the new observation data obtained at each moment is well 
valued in the filtering at the corresponding moment, Therefore, 
part of the interference in the system can be effectively 
eliminated, resulting in more filtering results. Therefore, the 
adaptive Kalman can effectively solve the problem of filter 
divergence, thereby making the filtering accuracy more 
accurate[20]. 
D. simulation verification 

In order to verify the effectiveness of the improved 
adaptive Kalman filter, Matlab simulation is used for 
verification. First, we construct a mixed signal to be filtered, 
which is superimposed and combined by the ideal control 
signal and the tremor signal. First, we use the following signal 
to simulate the ideal control signal in the hands of the main 
operator[21]:

𝑦(𝑡) = 20 cos(𝜋𝑡) + 10 sin(2𝜋𝑡) (16) 

At the same time, the following signals are used to 
simulate the tremor signal in the hands of the main operator: 

𝑛(𝑡) = cos(22𝜋𝑡) + 2 sin(18𝜋𝑡) (17) 

Then, the mixed signal acting on the main operator is the 
superposition signal of the above two: 

𝑠(𝑡) = 𝑦(𝑡) + 𝑛(𝑡) (18) 

The time domain characteristics of the above three 
signals are shown in Figure 5, Figure 6 and Figure 7. 
Meantimes the frequency spectrum of the tremor signal is 
shown in Figure 8. 

 

Fig.5 The ideal signal for simulation 

 
Fig.6 Simulated tremor signal 

 

Fig.7 Simulated mixed signal 

 
Fig.8 Tremor Signal Spectrogram 

It can be seen that the frequency of the simulated tremor 
signal is between 8-12 Hz, which is in line with the research 
results of the researchers on the physiological tremor signal of 
the human hand. 

The main advantage of the adaptive Kalman filter 
algorithm compared with the ordinary low-pass filter 
algorithm is to solve the problem of obvious time delay and 
information loss in the ordinary low-pass filter. First, we use a 
fourth-order Butterworth low-pass filter to filter the mixed 
signal, and the filtering effect is shown in Figure 9[14]: 

 
Fig.9 Butterworth low-pass filter before and after comparison 

From Figure 9, we can see that the chatter component in 
the mixed control signal can be effectively filtered out by the 
Butterworth low-pass filter, but the filtered signal produces 
loss and obvious time loss compared with the unfiltered signal. 
Delay. We use the traditional Kalman filter to filter the same 



signal again, and the comparison chart of the signal before 
and after filtering is shown in Figure 10. 

 
Fig.10 Comparison before and after traditional Kalman filter 

As can be seen from Figure 10, the traditional Kalman 
filter can not only effectively filter out the tremor components 
in the mixed control signal, but also has a significantly 
improved time delay compared with the Butterworth low-pass 
filter. However, in actual surgery, different operators and 
different surgical environments may correspond to different R 
constants, so it is unreasonable to set R as a constant in this 
filter. Next, we use the adaptive Kalman tremor filtering 
algorithm to filter the same signal above, and the filtering 
effect is shown in Figure 11. 

 
Fig.11 Adaptive Kalman Filter before and after comparison 

In order to verify the effect of filtering, the filtered curve 
and the ideal signal are fitted and compared, as shown in 
Figure 12: 

 
Fig.12 Comparison of Adaptive Kalman Filtering and Ideal Signal Fitting 

It can be seen from Figure 12 that the curve after 
adaptive Kalman filtering is compared with the ideal control 
signal, and it is found that the fitting degree is very high. It 
has a good filtering effect and can meet the requirements of 
surgery. Through the comparison of the above figure, we can 
find that the filtering effect of the low-pass filter is not very 
good, which will cause the loss of information and the delay 
is relatively high. Use the root mean square error between the 
two signals. To describe the amplitude error between them, 
the root mean square error of the two signals is 3.81, and the 

Kalman filter can find that the delay is very low at about 
0.035s, which has met the requirements of surgery. 

IV. EXPERIMENTS AND RESULTS 
A. Experimental set up 

To verify the effectiveness of defibrillation, physical 
experiments were carried out. The experimental equipment is 
shown in Figure 13. Figure 14 Physical picture of primary 
operator. During the experiment, we push the main 
manipulator to make the sensor output signals. Get the signal 
from the end to move. NDI is used to collect the master and 
slave displacement. Then the waveform is compared with the 
acquired displacement. 

 
Fig.13 Master slave displacement experiment 

 
Fig.14 Master manipulator 

B. Experimental results 

 
Fig.15 Comparison between master displacement and slave 

displacement 



Figure 15 shows a comparison of the primary end 
displacement and the secondary end displacement. As can be 
seen from the figure, the operator will naturally produce a 
certain physiological tremor in the process of operating the 
main end operator, which is difficult to avoid. After the 
adaptive Kalman filter, the tremor signal of the hand is well 
filtered, and the displacement curve of the slave end operator 
becomes smoother. 

V.CONCLUSION 
 This paper mainly designed a tremor filtering method, 

which uses a zero-phase filter to extract the tremor signal, and 
then uses an adaptive Kalman filter to estimate the tremor 
signal, so that the tremor signal can be superimposed with 
opposite amplitudes and the same phase. next moment. 
Through simulation verification, it is found that this method 
can effectively filter the tremor signal, and can effectively 
prevent doctors from misoperation. This is of great 
significance to the development of vascular interventional 
surgery. Although it can be seen from the simulation results 
and experiments that the adaptive Kalman filter can 
effectively filter the tremor signal, there are still many 
shortcomings in the current research, and further 
improvement is needed. At present, only one person has been 
found to conduct the experiment, and multiple people need to 
be found for further verification in the future.  
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