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 Abstract - With the increasing use of vascular interventions, 
catheter navigation in complex vessels has become even more 
critical. Vascular intervention surgeries also require more precise 
manipulation and a high level of automation. In this paper, a 
reinforcement learning- based navigation model was designed and 
implemented in virtual environment. The task is to insert the 
catheter and guidewire into the aortic arch automatically. The 
whole experiment was carried out in the virtual environment 
based on SOFA engine. Firstly, the model of vessel and 
catheter/guidewire was established. Secondly, a reinforcement 
learning method (asynchronous advantage actor-critic) was used 
to test the performance of catheter autonomous navigation in 
vessels. Finally, the results were analyzed and compared with 
manual operation. The results demonstrate that the automatic 
insertion has shorter operation time and less contact force. 
 
 Index Terms -Vascular interventional surgery, Reinforcement 
learning, Catheter insertion, Actor-critic. 
 

I.  INTRODUCTION 

With the rapid increase in cardiovascular morbidity, 
minimally invasive vascular interventions have rapidly 
replaced traditional open or cranial surgery due to their patient-
friendly nature [1]. For many years, medical robots have been 
used in surgery and healthcare, and the use of robots in surgery 
has been beneficial for departments such as head and neck, 
cardiac and urology Robotics in cardiac surgery [2]. 

The ultimate goal of vascular intervention is to perform the 
procedure without compromising the integrity of the chest [3]. 
Catheter access to the heart can be less traumatic for the patient. 
However, it significantly increases the complexity of the 
surgical approach, requiring more sophisticated instruments, 
greater precision, dexterity and intuitive remote manipulation 
[4]. It also has its disadvantages: interventional procedures are 
highly dependent on the surgeon's surgical experience, and the 
cost of training qualified surgeons is high [5]. 

Existing master-slave interventional robot systems are 
passive recipients of the surgeon's actions. In the more mature 
CorPath GRX system, autonomy is also limited to 
compensation for the angle of rotation of the guidewire [6]. It 
is necessary to combine simulation technology and in vitro 
physical vascular models to build a more intelligent robotic 
system for vascular interventions. 

There is also growing research on virtual surgery. The 
essential features of virtual surgical systems are the realism of 

the model and real-time interaction. The most challenging task 
in developing virtual training systems is how to accurately and 
efficiently simulate the behaviour of interventional devices 
(e.g. guidewires and catheters) in the vascular system. Although 
many approaches have been proposed in this area, most of them 
have focused on the behaviour of individual devices [7]. 
However, the human circulatory system has a high degree of 
morphological complexity. In endovascular procedures, there 
are many vascular bifurcations from the incision to the target 
location [8]. To guide the interventional device to the desired 
branched vessel, the surgeon needs to translate and rotate the 
distal end of the device to control the movement of its tip to 
select the correct path. This task is difficult to accomplish with 
only one device. In actual clinical practice, the surgeon needs 
to operate multiple interventional devices (adjustable sheaths, 
catheters, catheters, guidewires, etc.) simultaneously to access 
the target location [9]. In order to closely resemble a real 
surgical scenario as much as possible, the virtual training 
system must be able to simulate the interaction behaviour of 
multiple devices. 

In recent years, automation technologies based on deep 
learning and reinforcement learning have been rapidly shaped 
and implemented, showing a high scientific value. In the field 
of surgical robots, the automated and intelligent operation of 
surgical instruments based on ensuring surgical safety has been 
a goal pursued by researchers. However, compared to general 
artificial intelligence systems, surgical data is costly to acquire 
and less interpretable, and a model is only valid for a single 
surgical task and lacks generalization capability [10]. However, 
in contrast to the complex multi-process decision-making tasks 
such as resection and suturing in general surgery, the simple, 
intravascular dynamic and stable mode of operation of tube-
filament access in interventional surgery provides a good 
environment for the training of automatic models and makes it 
easier to exploit the advantages of high precision and stability 
of robotic control. The study of critical technologies for the 
automatic control of surgical robotic tube and wire access is a 
realistic and scientific attempt [11]. The simplification and 
automation of tube and wire access operations can greatly 
relieve the technical and experiential pressure on interventional 
surgeons and provide new perspectives and tools for the 
development of surgical robots and vascular surgery by 
quantifying the implicit intraoperative features. 



Researchers from different teams have experimented with 
virtual training systems, automated catheter navigation in 
vascular in vitro models. Yang et al. at Imperial College of 
Technology attempted to use reinforcement learning algorithms 
to control a vascular interventional robot to complete 
autonomous over-arch operations on four aortic arch models, 
showing that the robot's operating force fluctuated over a 
significantly lower range than that of a human hand and 
operated at approximately half the speed of a human hand [12]. 
Using the dueling deep Q-learning (DQN) algorithm to control 
catheter entry into a heart model, You et al. at the University of 
Ulsan also demonstrated that a reinforcement learning strategy 
based on a simulated environment could control an actual 
catheter to complete a cardiac entry [13]. However, there are 
still problems such as lack of accuracy and a relatively simple 
model. Initial control using the Deep Deterministic Policy 
Gradients (DDPG) algorithm was implemented in a 2D 
environment by Karstensen et al. at Fraunhofer IPA, Germany, 
and performed well in a planar vascular model, but fell short for 
higher-level path control [14]. 

Most studies have been devoted to simulating the 
behaviour of a single individual and blood vessels in the human 
vasculature, with fewer studies on interaction, but in real 
surgical operations, the surgeon needs to work with multiple 
instruments in order to complete the entire surgical operation 
[15]. So, it is vital to regard both the catheter and guidewire in 
vascular interventions.  

In this paper, we use a reinforcement learning algorithm to 
implement control of catheter access in a simulation engine. 
The navigation process was tested to be effective and compared 
with the manual manipulation. The simulation process 
performed is an over-arching operation of the aortic arch, which 
is eventually trained successfully in a virtual environment. 
Meanwhile, manual manipulation was also conducted using 
phantoms as the input of the motion information. The paper is 
structured as follows: Section II focuses on the building of 
vascular models and reinforcement learning methods. Section 
III introduces the arrangements of the experiment and analyse 
the results. Section IV and V present the discussion and the 
summarization of the paper. 

II.  METHODS 

 The methods we use in this research includes four main 
parts: modelling, reinforcement learning, the specific algorithm 
we use and the training engine. The mentioned four parts cover 
the two main issues- algorithms and simulation environments 
for reinforcement learning. 

A. Modeling 
 The process of modelling the aortic arch and catheter 
progresses from the base shape to the inclusion of more 
features. Its medical characteristics are primarily realistic, and 
the established model is subsequently fed into the SOFA engine 
to establish its environmental parameters. 
 In clinical vascular interventions, the proximal end of the 
guidewire and catheter is controlled by the surgeon, while its 
distal end moves within the bounded range of the vascular 
constraint in response to the proximal surgeon's maneuver [16]. 

In the simulation modeling of the guidewire catheter, in order 
to reduce the computational volume and improve the simulation 
effect, the guidewire catheter is often discretized (i.e., the 
longer guidewire catheter is decomposed into a limited number 
of small, interrelated segments), so that from the effect, each 
segment of the guidewire catheter can be considered as a 
discrete cantilever beam structure. Therefore, this section will 
propose a physical model construction method of the catheter 
guidewire using Timoshenko beam theory based on the 
dynamics of the cantilever beam, which can be achieved by 
imposing different physical parameters to model the guidewire 
and catheter with different physical properties such as stiffness 
and mass, respectively. 
 The movement of the guidewire through the vascular tree 
is simulated using SOFA. The walls of the vascular tree are 
rigid. The lumen is empty; thus, no dynamic resistance to the 
guidewire motion is considered. 

Our model is based on the angiographic image of the aortic 
arch, but with a partial simplification of the vascular connection 
at the vessel cross-section, so that the cross-sections of the 
model vessels are all circular, while the interface is a smooth 
connection. 
 In order to verify the function of reinforcement learning, 
this paper obtains the accuracy and stability of catheter 
autonomy learning by modeling simulated over-arch operations 
on the aortic arch. 

B. Reinforcement Learning Methods  
The basic model of reinforcement learning is the 

individual-environment interaction. The individual/intelligent 
agent is the part of the individual that can take a series of actions 
and expects to achieve a high benefit or goal. The other parts 
associated with this are referred to as the environment. The 
whole process is discretized into different time steps. At each 
moment, the environment and the individual interact 
accordingly. The individual can take specific actions, which are 
imposed on the environment. After receiving the individual's 
action, the environment gives the individual feedback on the 
current state of the environment and on the reward that has been 
generated as a result of the previous action. 

Reinforcement learning is a formal framework that uses 
Markov decision processes to define the process by which a 
learning intelligence interacts with its environment using states, 
actions and gains [17]. 

In the basic setup of reinforcement learning, there are 
essential elements such as agent, environment, action, state, 
reward, etc. The agent interacts with the environment to 
generate trajectories, and by performing the action, the 
environment changes its state. The agent interacts with the 
environment, generating trajectories that cause the environment 
to change state by performing an action; the environment then 
gives the agent a reward (positive or negative) for its current 
action. Through this interaction, more experience is 
accumulated, and the policy is updated to finally form a closed 
loop. The mystery of why reinforcement learning can model the 
long-term benefits of decision-making lies in its optimization 
goal. To be specific, at each moment, the reward is a specific 
value and the agent's goal is to maximize the expectation of the 



reward it obtains [18]. This means that instead of maximizing 
the immediate reward, it maximizes the cumulative reward over 
time. 

As shown in Fig. 1, the guidewire and catheter are both set 
as the agents and could move forward/backward as well as 
rotate. The algorithm is able to control them separately. In the 
figure, q1 and q2 are the two nodes of the beam unit e1, each 
with 6 degrees of freedom. Again, because the overall 
morphology of the guidewire changes considerably in the 
vasculature, but maintains a small deformation in the local 
coordinate system of each beam cell, in accordance with the 
assumption of the co-rotation model. 

 

 
Fig. 1. Agent setting of both guidewire and catheter. 

  

C. Asynchronous Advantage Actor-critic(A3C) 
 In this section, the background of the emergence of A3C 
and its advantages are presented with a contrast between 
previous methods. Finally, the single A3C network algorithm is 
given. 
 Asynchronous advantage actor-critic is an algorithm 
proposed by Google DeepMind to solve the Actor-Critic non-
convergence problem. While DQN is vital because it has an 
experienced pool that reduces the correlation between data, 
A3C proposes an alternative way to reduce the correlation 
between data: asynchronously. 

A3C creates multiple parallel environments and allows 
multiple agents with sub-structures to update parameters in the 
main structure on these parallel environments simultaneously. 
The agents in parallel do not interfere with each other, while the 
parameter updates of the primary structure are interfered with 
by the discontinuity of the updates submitted by the 
substructures, so the correlation of the updates is reduced, and 
convergence is improved. 

The main idea of A3C is asynchronous, corresponding to 
the asynchronous distributed RL framework. Corresponding to 
Google's Gorilla platform Massively Parallel Methods for Deep 
Reinforcement Learning in 2015, Gorilla uses different 
machines with the same PS [19]. While in A3C, it is the same 
machine with multi-core CPUs, which reduces the parameter, 
and in A3C, it is the same machine with multiple CPUs, which 
reduces the cost of transferring parameters and gradients, and 

the validation iterations are significantly faster in the paper. 
And more importantly, it is an actor-learner pair with multiple 
threads on the same machine; each thread corresponds to a 
different exploration policy, and the overall inter-sample 
correlation is low, so it is no longer necessary to introduce an 
experience replay mechanism in DQN for training. This enables 
an on-policy approach to training. In addition, the CPU is used 
in training instead of the GPU because the RL batch is generally 
small during training and the GPU is much idle while waiting 
for new data. 

Different types of deep neural networks provide an 
efficient operational representation of the policy optimization 
task in DRL. To alleviate the instability that occurs when 
combining traditional policy gradient methods with neural 
networks, various types of deep policy gradient methods use an 
empirical replay mechanism to eliminate the correlation 
between training data. 

However, there are two main problems with the empirical 
replay mechanism: Each real-time interaction between the 
agent and the environment requires a lot of memory and 
computational power; the experience replay mechanism 
requires the agent to learn using an off-policy approach, which 
can only be updated based on the data generated by the old 
policy; and the training of DRLs has previously relied on 
computationally powerful graphics processors. 

The A3C algorithm first constructs a global network. This 
network will consist of convolutional layers for spatial 
dependencies, followed by LSTM layers for temporal 
dependencies, and finally value and policy output layers [20]. 
The process of the algorithm is shown below: 

Algorithm 1. A3C network learning process 
1      Input: public part of the A3C neural network 
parameters θ, ω 
2      Update time series t=1 
3      Reset the gradient updates of Actor and Critic 
4      θ’=θ, ω’=ω 
5      Initialize state start t 
6      Choose action at based on policy π(at| st; θ) 
7      Execute action at to get reward rt and new state 
8      t←t+1,T←T+1 
9      If st is terminated, then go to step 10, otherwise go 
back to step 6 
10    Calculate Q(s,t) for the last time series position st 
11      For i∈(t-1,t-2,... .tstart): 

1) Calculate Q(s, i) for each moment: 
Q(s,i)=ri+γQ(s,i+1) 
2) Local gradient update of the cumulative Actor 
3) Local gradient update of the cumulative Critic 

12      Update the model parameters of the global neural 
network. 

θ=θ-αdθ, w=w-βdω 
13      If T>Tmax, then the algorithm ends and outputs the 
public part of the A3C neural network parameters θ, ω, 
otherwise go to step 3 

D. Training Engine 



 The setup consists of the DRL-Agent, a simulated 
environment created in SOFA. 
 SOFA (Simulation Open Framework Architecture) is an 
open-source C++ library originally developed for interactive 
computational medical simulation [21]. SOFA, as a physical 
simulation engine mostly used for medical simulation scenario 
studies, has the following advantages:  

1)SOFA decomposes the complex simulator into 
independent components with different functions, such as 
degrees of freedom, collision detection algorithm, binding 
force, model properties, differential equation solver, linear 
solver, etc. 2) Users can call the required components in the 
same scenario or data structure according to the simulation 
requirements, and combine them by layer and adopt the same 
mapping mechanism to build personalized and customized 
simulation scenarios to achieve real-time synchronization and 
continuity of the simulation process.  

SOFA physical engine introduces the concept of multi-
model representation based on scenario graphs to easily build 
simulations consisting of any number of objects. The physical 
object model constructed in SOFA engine is a unified body of 
internal model, collision model and visual model, where: the 
internal model has independent degrees of freedom, mass law 
and intrinsic law, which can be used to calculate the elastic 
force of the model, etc.; the collision model is in contact with 
the internal geometry model, which can be used to realize 
collision detection and response; the visual model contains 
detailed geometry and rendering parameters, which can be used 
to perform simulation The visual model contains detailed 
geometry and rendering parameters for visual rendering of the 
object. The inclusion of the collision model and the visual 
model can avoid the problem of low real time and realism 
caused by the physical model calculation. In the creation of 
personalized simulation environments, the model construction 
and mapping mechanisms are the first task to be studied.  
 Most of the current games have a large number of SOFA 
games, a perfect engine, and a good training environment to 
build. Since SOFA can be cross-platform, it can be trained 
under Windows and Linux platforms and then converted to 
WebGL for publishing to the web [22]. Furthermore, ml-agents 
is an open-source plug-in for SOFA, which allows developers 
to train in SOFA's environment, without even writing code in 
python, without a deep understanding of PPO, SAC and other 
algorithms. As long as developers configure the parameters, 
they can easily use reinforcement learning algorithms to train 
their own models [23]. 
 During the training process, the user's operating 
information is collected by the force interaction device and 
input into the computer to control the movement of the surgical 
instruments in the virtual training environment. The interaction 
between the surgical instruments and the vascular tissue will be 
performed in the computer, and the simulation results will be 
transmitted to the force interaction device and the LED display, 
and finally fed back to the user as tactile force and visual 
images, respectively. The experimental setting of the 
manipulator and the virtual engine is shown in Fig. 2. We use a 
personal laptop to build the virtual simulation environment for 

our vascular interventional surgery training simulator. The 
laptop used has 16 GB of RAM, Intel Core i7-10750H 
processor and NVDIA RTX2070 graphic card. 

 

 
Fig. 2. Experimental setting of the manipulator and virtual engine. 

III.  EXPERIMENTS AND RESULTS 

 The experiment was carried out both in virtual environment 
and the real control. As the experimental setting shown in Fig. 
2, we conduct the experiment in the virtual engine using 2 set 
of phantoms. The phantoms could control the catheter and the 
guidewire in the same time or separately, guiding them into the 
aortic arch. Besides, the training process could also be 
conducted in that particular virtual environment. In the process 
of the experiment, the conduct force between the vessel and the 
catheter is accumulated, and experiment time is also recorded. 
The learning process in the virtual environment is shown as 
Fig.4. 
 The results of A3C learning and manual operation are 
shown in Fig. 4. As shown in the figure, the final results 
obtained from the training can corroborate that the model was 
successfully trained to achieve stable returns, with large 
fluctuations in the choice of losses, which may be related to the 
instability of the model itself at the time of collision. 

 

 
Fig. 3. RL learning process of catheter in SOFA. 

 
         The A3C algorithm was added and retrained for 
comparison to obtain different results of the algorithm for the 
simulation of vascular interventional procedures in the built 
training environment. The virtual environment for training is 



represented in Fig. 3. And using the catheter to access the aortic 
arch and perform over-arch manipulation, we derived the 
subsequent result as shown in Fig. 4. 

 

 
(a)  

 

 
(b)  

Fig.4. Results of contact force in both learning setting and manual experiment: 
(a) Result of the friction. (b) Result of the pressure. 

 
The conclusion that can be drawn from Fig. 4 is that after 

training using the reinforcement learning method, the catheter 
and guidewire can enter the aortic arch in a shorter time. And 
the contact force (friction, pressure) between the catheter and 
the vessel in the simulation environment is reduced more 
significantly, as shown in TABLE I.  

The results show that the average insertion time after the 
training is 68.61s, which is nearly 30% shorter than manual 
insertion. Also, the average contact force as well as the 
maximum force of the training also perform better than the 
manual manipulation. But there are still forceful fluctuations 
during the entry, which shows that the model needs further 

optimization. Besides, our experiment needs to include more 
parameters. 

TABLE I 
RESULTS OF THE TRAINING PROCESS AND MANUAL MANIPULATION 

 Training Manual 

Insertion Time (s) 68.61 97.35 
Contact Force (max) 

(mN)  22.15 43.27 

IV.  DISCUSSIONS 

The research in this paper is divided into two main 
processes: the modelling part and the model training part.  

In the modelling part, we try to provide an environment for 
subsequent algorithm training by modelling the aortic arch. The 
model of the aortic arch is based on the real vascular 
environment, but due to the high complexity of the vasculature 
and the difficulty to monitor the internal environment in real 
time, the modelling process simplifies the structure of the 
vasculature and ignores the blood flow and the more complex 
respiration and pulsation in the vasculature, which needs to be 
solved by more accurate modelling and imposing fluid motion 
in the model.  

In the training part of the model, the final training results 
obtained using the A3C algorithm showed that the reward 
training of the model was more in line with expectations and 
was able to achieve reward stability in a short step; however, 
the fluctuation of the loss function was large and did not 
converge after a certain length of training, which may be due to 
the parameter settings in the training, or the large fluctuation of 
the catheter position in the training environment This may be 
due to the parameter settings in the training, or it may be due to 
the large fluctuations in the position of the conduit in the 
training environment, which does not converge to the same 
stable path. These problems need to be solved by tuning the 
parameters and imposing more constraints on the catheter in 
subsequent studies. 

V.  CONCLUSIONS 

In this paper, we aim to use reinforcement learning 
algorithms to implement control of catheter access in a 
simulation engine. The simulation process performed is an 
over-arching operation of the aortic arch, which is eventually 
trained successfully in a virtual environment and can be used in 
subsequent catheter access navigation in a real environment. As 
the result shows, this concept is feasible and can further 
improve the model accuracy and algorithm accuracy. 

To date, we have been investigating the feasibility of our 
approach using highly idealized vascular models and just a 
guidewire. But there is still a long way to go before 
reinforcement learning can be applied to real-world scenarios. 
The complex environment that changes at any time in the 
vasculature requires a simulation environment with sufficient 
vascular complexity, while being able to simulate blood flow, 
pulse, heartbeat and other influencing factors, which will be a 
huge project. The results show that the A3C algorithm is able 
to obtain more desirable results in these idealized models. 
Future studies should address the mentioned limitations by 
adjusting the agents and settings to fit more realistic vessel 



geometries, as well as by using both guidewires and catheters. 
Also, the specific contact of the vessel wall with the catheter 
guidewire and its own elastic characteristics should also be 
properly characterized. 
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