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 Abstract - An improved multi-robot cooperative strategy 

based on the improved artificial bee colony algorithm is proposed 

for the task of underwater multi-robot cooperative area target 

search. The strategy consists of three stages: cruising stage, 

building capture alliance stage, and cooperative search stage. In 

the cruising stage, robot adopts the improved random walk 

algorithm for aimless cruising. In the building capture alliance 

stage, robot uses an auction algorithm for the assignment of search 

tasks. In the cooperative search stage, robot adopts the improved 

artificial bee colony algorithm for cooperative search of targets. 

Furthermore, simulations are conducted, and the results 

demonstrate that the proposed strategy can effectively guide 

multiple robots to perform area target search in unknown 3D 

underwater environments. 

 
Index Terms - Multi-robot system, Amphibious spherical robot, 

Collaborative searching. 

 

I.  INTRODUCTION 

Underwater target search is an important task for 

underwater robots in various applications such as scientific 

research, ocean exploration, and military operations [1]. In 

recent years, the development of collaborative search among 

multiple underwater robots has become a research focus in the 

field of underwater robotics [2,3]. In particular, the 

collaborative target search of multiple underwater robots in 

three-dimensional unknown underwater environments has 

become an intensively researched direction [4]. 

To deal with the complexity of underwater environments, 

decentralized control strategies have been introduced in recent 

years. In the decentralized control strategy, multiple underwater 

robots exchange information and make decisions in a 

decentralized manner [5]. For example, researchers have 

proposed a distributed method for collaborative search of 

multiple underwater robots based on consensus algorithms, 

where each underwater robot communicates with its neighbors 

and shares its location information to reach consensus [6,7]. 

In addition, some researchers have introduced advanced 

optimization algorithms to improve the search paths of multiple 

underwater robots in collaborative search. Among them, some 

researchers have applied the grey wolf algorithm to optimize 

the motion path [8,9], and others have conducted in-depth 

research on path planning in 3D environments [10]. 

Furthermore, some researchers have introduced advanced 

optimization algorithms to improve the efficiency and 

effectiveness of collaborative search among multiple 

underwater robots [11]. Among them, some researchers have 

conducted in-depth research on trajectory tracking of 

underwater robots and used dynamic optimization algorithms 

to optimize the search trajectory of underwater robots [12]. In 

addition, some researchers have applied an improved artificial 

potential field algorithm to multi-robot underwater target 

encirclement which shown in Figure 1[13]. The study of fluid 

mechanics models can help predict changes in water flow and 

underwater environments, improving the control accuracy and 

robustness of underwater robots in complex environments 

[14,15]. The application of these technologies will greatly 

promote the development and practical application of 

collaborative search among multiple underwater robots.  
 

 
Fig. 1 Schematic diagram of multi machine encirclement [13] 

 

At the same time, some researchers have explored the 

integration of artificial intelligence technologies such as 

reinforcement learning and neural networks in underwater 

robot search. Among them, researchers have proposed a deep 

reinforcement learning method for coordinating multiple 

underwater robots in search tasks, which performs better than 

traditional methods [16]. 

Cooperative search methods for multiple autonomous 

underwater vehicles (AUVs) can be divided into two types 

based on target information: one based on known target prior 

distribution, such as heuristic search methods, and the other 

based on sensor information without any target information, 

such as area search methods [17].  

 This paper focuses on the cooperative search task based 

on sensor information using swarm intelligence algorithms, and 



proposes a comprehensive system solution consisting of three 

phases: random cruising phase, alliance formation phase, and 

collaborative search phase. First, an improved random walk 

algorithm is proposed for multiple AUVs to cruise underwater 

and obtain target information. Once target information is 

detected, an improved auction algorithm is used to form search 

alliances. Finally, an improved artificial bee colony algorithm 

is used to determine the path of each AUV in searching for the 

target. 

 The main contributions of this paper can be summarized 

as follows: a system solution is proposed for multiple AUVs to 

collaboratively search for targets in an unknown underwater 3D 

environment. In this solution, a mixed rule evaluation function 

is designed in the random walk algorithm based on the specific 

underwater environment and robot motion characteristics, and 

a self-adaptive location selection method is designed in the 

artificial bee colony algorithm. Finally, the feasibility and 

efficiency of the proposed algorithm are demonstrated by 

comparing it with classical particle swarm optimization and 

artificial bee colony algorithms. 

 The organization of this paper is as follows: Section 2 

introduces the problem description. Section 3 presents the 

improved artificial bee colony-based method for cooperative 

search by multiple underwater robots. Section 4 provides 

simulation results and analysis. Finally, conclusions are given 

in Section 5. 

II.  PROBLEM DESCRIPTION 

 The search task of this paper is to use multiple AUVs to 

search for targets in a specific area in an underwater 

environment. To simplify the underwater environment and 

AUVs state, the following assumptions are made: 

 a. AUVs are denoted as 𝐴𝑖{i = 1, 2, ..., N}, and target 

points are denoted as 𝑇𝑖  {i = 1, 2, ..., M}, where N is the 

number of all AUVs and M is the number of all target points. 

 b. The position of each target point is unknown to each 

AUV, and AUVs can communicate and share data with each 

other. AUVs can be considered as circular robots with a small 

radius, and their moving speed dynamically changes within a 

reasonable range. 

 c. Each target point emits information (such as radiation 

from a radioactive source) into the underwater environment, 

and its information intensity is defined by formula 1： 
 

𝑆(𝑇𝑖, POS 𝑗) =

{
 

 

 

𝐼𝑚𝑎𝑥,  𝐷𝐼𝑆(𝑃𝑂𝑆𝑇𝑖 , 𝑃𝑂𝑆𝑗) ⩽ 𝐷𝐼𝑆𝑚𝑖𝑛
𝐼𝑚𝑎𝑥

𝐷𝐼𝑆(𝑃𝑂𝑆𝑇𝑖,𝑃𝑂𝑆𝑗)
, 𝐷𝐼𝑆𝑚𝑖𝑛 < 𝐷𝐼𝑆(𝑃𝑂𝑆𝑇𝑖 , 𝑃𝑂𝑆𝑗) ⩽ 𝐷𝐼𝑆𝑚𝑎𝑥

𝐼𝑚𝑖𝑛 , 𝐷𝐼𝑆(𝑃𝑂𝑆𝑇𝑖 , 𝑃𝑂𝑆𝑗) > 𝐷𝐼𝑆𝑚𝑎𝑥

(1) 

Among them, 𝑃𝑂𝑆𝑇𝑖represents the position of the target 

point 𝑇𝑖 , 𝑃𝑂𝑆𝑗  represents the position of AUV j, 

𝐷𝐼𝑆(𝑃𝑂𝑆𝑇𝑖 , 𝑃𝑂𝑆𝑗) represents the distance from AUV j to the 

target point I, 𝐷𝐼𝑆𝑚𝑖𝑛  is the minimum threshold for the 

defined distance, 𝐷𝐼𝑆𝑚𝑎𝑥  is the maximum threshold for the 

defined distance, 𝐼𝑚𝑖𝑛  is the minimum information intensity 

received by the AUV, 𝐼𝑚𝑎𝑥 is the maximum information 

intensity received by the AUV. 

 d. When the distance between the position of AUV 𝑃𝑂𝑆𝑗 

and the position of target point 𝑃𝑂𝑆𝑇𝑖 is less than the defined 

minimum distance 𝐷𝐼𝑆𝑚𝑖𝑛, the AUV receives the maximum 

information intensity 𝐼𝑚𝑎𝑥. The situation is similar for other 

positions. When the AUV receives an information intensity 

greater than I1, it will perceive the existence of the target, and 

when the AUV receives an information intensity greater than 

I2, it will lock onto the target. 

 The simplified model for multi AUV search in this paper 

is shown in Figure 2.  
 

 
Fig. 2 Search Simplified Model 

 

The search process of this article is divided into three 

stages, and the basic flowchart is shown in Figure 3. The 

following section will provide a detailed explanation. 
 

 
Fig. 3 Overall search flowchart 

     

           

            

   

                              

                           

                     

                            

                               

                            

      

            

           

      

  

  

   

  

   

   



III.  SOLUTION 

 The collaborative search task of multiple AUVs can be 

completed in three stages: (1) random cruise search for targets; 

(2) Establish a dynamic search and capture alliance to the target 

location; (3) Search for target location based on target 

information. Based on this, this article proposes a multi robot 

collaborative target search method based on an improved 

artificial bee colony algorithm. 

Below is an explanation of some variable representations 

used in the algorithm in this article: 

A flag represented by 𝑔(𝐴𝑖)  indicates the state of the 

AUV as cruising, searching, or locking. Another flag 

represented by 𝑔(𝑇𝑖)  indicates the state of the target as 

unknown, known, or locked: 
 

𝑔(𝐴𝑖) = {

𝐴𝑥 ,  𝐴𝑈𝑉 is cruising 
𝐴𝑦 , 𝐴𝑈𝑉 is finding a target 

𝐴𝑧 ,  𝐴𝑈𝑉 is searching for a target 
                         (2) 

𝑔(𝑇𝑖) = {

𝑇𝑥 , Target is unknown 
𝑇𝑦 , Target is noticed 

𝑇𝑧 , Target is searched 
                    (3) 

A. Cruising stage based on improved random walk 

 At initialization, all AUV flags are set to 𝑔(𝐴𝑖) = 𝐴𝑥, and 

all target flags are set to 𝑔(𝑇𝑖) = 𝑇𝑥. Initially, the positions of 

AUVs are randomly distributed in the underwater environment, 

with position 𝑃  = {𝑝1, 𝑝2, ..., 𝑝𝑛}, where n is the number of 

robots. AUVs cannot obtain target information in the 

environment at the beginning, so they are set to the cruising 

stage, and the memorization list is L = {}. For each robot i, the 

following random walk search process is performed: the current 

robot is at 𝑝𝑖 , a random direction 𝑑𝑖  and step length d are 

selected, and the next position 𝑝𝑖+1 is calculated: 
 

            𝑝𝑖+1 = 𝑝𝑖 + 𝑑𝑖 ⋅ 𝑑                  (4) 
 

If the new position 𝑝𝑖+1 is already in the memorization 

list, skip that position and generate a new position based on 

Equation (1). Otherwise, calculate the evaluation value of the 

new position and compare it. However, the general evaluation 

function is not suitable for the movement of AUVs. For 

example, AUVs may collide with obstacles or other AUVs, or 

their actions may exceed the potential area of the target. 

Therefore, this paper designs a hybrid rule evaluation function 

for small spherical amphibious robots, which has the following 

structure: 
 

         𝐸(𝑃) = 𝑆(𝑇𝑖  , 𝑃) − 𝐶𝑟𝑎𝑠ℎ𝐶ℎ𝑒𝑐𝑘 (𝑃)       (5) 
 

Among them, 𝐸(𝑃) represents the evaluation value of 

position 𝑃, and 𝑆(𝑇𝑖  , 𝑃) represents the information intensity 

of position 𝑃 at time i, 𝐶𝑟𝑎𝑠ℎ𝐶ℎ𝑒𝑐𝑘 represents the collision 

detection value of position 𝑃. 

 If the evaluation value of the new position is better than 

the current position, update the current position to 

𝑝𝑖+1;otherwise, accept the new position with a certain 

probability (such as Boltzmann probability) and update the 

current position to 𝑝𝑖+1. The Boltzmann probability 

calculation formula is: 
 

                𝑈(Δ𝐸) = 𝑒−
Δ𝐸

𝑇                   (6) 
 

where 𝛥𝐸=𝐸(𝑝𝑖+1) - 𝐸(𝑝𝑖) is the difference in evaluation 

values between the new and old positions, and T is the 

temperature parameter that controls the probability size. 
 

          𝑝𝑖 ← {
𝑝𝑖+1,  with probability 𝑈(𝛥𝐸)
𝑝𝑖 ,  otherwise 

     (7) 

 

 Specifically, in this stage, all AUVs with 𝑔(𝐴𝑖)  = 𝐴𝑥 

randomly cruise within the search area to discover target 

information. If an AUV a detects target information, its flag is 

set to 𝑔(𝐴𝑖) = 𝐴𝑦 , and the flag of the detected target 𝑇𝑖  is 

marked as 𝑔(𝑇𝑖) = 𝑇𝑦. 
 

B. Construction of the search and capture alliance based on 

auction algorithm 

 In this stage, assuming there are n AUVs with 𝑔(𝐴𝑖) = 

𝐴𝑦 and m target points with 𝑔(𝑇𝑖) = 𝑇𝑦, the task allocation 

problem between n AUVs and m target points needs to be 

solved. The auction algorithm has advantages such as 

efficiency, flexibility, scalability, and adaptability, which can 

effectively solve the allocation problem of multiple AUVs and 

multiple target points. 
 

 
Fig. 4 Auction algorithm flowchart 

 

 This article proposes a construction scheme of the search 

and capture alliance based on the auction algorithm. The 

auction algorithm is essentially a search tree algorithm, 

consisting of auction agents and bidding agents. Its basic idea 

  

   

                               

                                

                            

                         

     

                              

      

                         

                                

                         

               

               

                   

   



is that m target points are auctioned by n AUVs. Assuming that 

the value of the i target point is 𝑉𝑖, and the cost that AUV j 

needs to pay to reach the target point is 𝐶𝑗, the profit obtained 

is 𝐺𝑖𝑗  = 𝑉𝑖  - 𝐶𝑗 . For all AUVs, the auction stops when the 

overall profit is maximized. The basic process is shown in 

Figure 4. 

 According to the research objectives of this article, it can 

be assumed that the profits of all target points are the same and 

equal to a constant, and the cost that the AUV needs to pay to 

reach the target point is the estimated distance. Unlike 

traditional auction algorithms, this article allows multiple 

AUVs to bid for the same target point, and this group of AUVs 

will form a search and capture alliance to conduct detailed 

search on the target point. 
 

C. Collaborative search phase based on improved artificial 

bee colony algorithm 

 In this phase, each AUV in the search coalition will 

collaboratively search for the same target. Assuming the 

communication between the AUVs in the same coalition is 

unobstructed, they will search for the specific location of the 

target through changes in the information strength at the target 

point, which can be abstracted as a combinatorial optimization 

problem. Considering the complexity of the underwater 3D 

environment and the diversity of multi-AUV collaboration, this 

paper proposes an improved artificial bee colony algorithm for 

multi-AUV collaborative area target search.  

 The artificial bee colony algorithm is used because it has 

faster search speed than traditional swarm intelligence 

algorithms, requires fewer iterations to achieve convergence, 

and is more suitable for scenarios with high real-time 

requirements underwater. In order to make the artificial bee 

colony algorithm more effective in collaborative target search, 

this paper has made some improvements specifically for AUVs. 

 In the proposed algorithm based on improved artificial bee 

colony, each AUV in the underwater environment represents a 

bee and moves in the three-dimensional search space. The 

fitness function Fitness(p) is the basis for judging whether a 

position is better or not, and is defined as follows: 
 

         𝐹𝐼𝑇 (𝑃) = ∑  𝑀
𝑖=1 𝑆(𝑇𝑖 , 𝑃) − crashCost(𝑃)     (8) 

 

 The definition of crashCost(𝑃)  is as follows: 

Obstacle(P) is used to determine whether there are obstacles at 

position P, AUV(P) is used to determine whether there are 

AUVs at position P, and Range (P) is used to determine 

whether position P exceeds the search area. 
 

     crashCost(𝑃) =

{
1, Obstacle(𝑃) is True 
0, Obstacle(𝑃) is False 

+ {
1,AUV(𝑃) is True 
0,AUV(𝑃) is False 

+ {
1,Range(𝑃) is True 
0,Range(𝑃) is False 

      (9)  

 At initialization, N candidate positions are randomly 

generated, and the fitness function value is calculated. The top 

50% of the positions are selected as high-potential positions, 

and the bottom 50% are selected as low-potential positions. The 

number of candidate positions is always N and does not change 

with iteration. The specific randomly generated candidate 

positions are as follows: 

𝑃 
𝑗 = 𝑃min

𝑗
+ rand (0,1)(𝑃max

𝑗
− 𝑃min

𝑗
)          (10) 

 

 Where 𝑃 
𝑗  belongs to {X, Y, Z} and is a component of the 

three-dimensional solution vector, and 𝑃max
𝑗

 and 𝑃min
𝑗

 are the 

maximum and minimum values that the AUV can reach in this 

dimension within one step. The scout AUV remembers its 

previous optimal solution and searches in the neighborhood of 

the high-potential position. The search formula is: 
 

 𝑄𝑖𝑗 = 𝑃𝑖𝑗 + 𝜑𝑖𝑗(𝑃𝑖𝑗 − 𝑃𝑘𝑗)               (11) 
 

 Where j belongs to {1,2,3}, k belongs to {1, 2, …, N}, k is 

randomly generated and k ≠ i, 𝜑𝑖𝑗  is a random number 

between [-1,1]. As the number of iterations accumulates, the 

distance between (𝑃𝑖𝑗 − 𝑃𝑘𝑗) decreases, the search space also 

decreases, that is, the step size of the search decreases 

dynamically, which helps the algorithm to improve its accuracy 

and eventually obtain the optimal solution, or a suboptimal 

solution very close to the optimal solution. 

 The scout AUV uses a greedy selection method to compare 

the optimal solution in memory with the neighborhood search 

solution. When the search solution is better than the optimal 

solution in memory, it replaces the memory solution; otherwise, 

it remains unchanged. 

 After all scout AUVs complete neighborhood search, they 

share position information with the backup AUVs. The backup 

AUV selects positions based on the information with a certain 

probability, and the probability of selecting positions with 

higher fitness function values is higher.  

 Similarly, the backup AUV performs a neighborhood 

search in the position it selects, using a greedy criterion to 

compare the solution obtained by the search with the solution 

corresponding to the original position, and replacing the 

original solution with the search solution if it is better, 

completing the role exchange; otherwise, it remains unchanged. 

In the ABC algorithm, the calculation formula for backup AUV 

to determine the selection probability is: 
 

          𝑃𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 =
𝐹𝐼𝑇(𝑃𝑖)

∑𝑘=1
𝑠𝑢𝑚  𝐹𝐼𝑇(𝑃𝑘)

               (12) 

 

 In the equation, 𝐹𝐼𝑇(𝑃𝑖) represents the fitness function 

value of the i-th solution. The probability of selecting each 

position is proportional to its fitness function value. 

 If the vanguard AUV gets trapped in a local optimum, i.e., 

the position remains unchanged for Limit iterations, and the 

fitness obtained by the vanguard AUV is not the current global 

optimum, then the position is abandoned and replaced with a 

new position obtained by random search from a spare AUV. 

 Throughout the entire iterative process, all AUVs will 

move along the new position until the target T is found. 

Otherwise, the artificial bee colony algorithm will re-enter the 

search phase.  

IV.  SIMULATION AND EXPERIMENT 

 In order to demonstrate the effectiveness of the proposed 

method in multi AUV collaborative target search in unknown 

three-dimensional environments, some simulations were 

conducted on a computer on the MATLAB platform. In order 



to simplify the implementation, the assumptions in this study 

are as follows:  

a. AUV and target are assumed to be regular spheres of the 

same size.  

b. AUV's endurance can meet the entire search process.  

c. The positions of AUV, obstacles, and search targets are 

randomly generated in a 3D underwater environment.  

d. Communication between AUVs is not delayed. 

Figure 5 shows the initialization state, randomly 

generating the position information of the search robot and the 

target point. The robot coordinates are A1 (10, 80, 10), A2 (15, 

70, 80), A3 (80, 10, 80), A4 (90, 10, 10), A5 (30, 30, 30), A6 

(77, 28, 10), and the coordinates of the two target points are (42, 

53, 10) and (73, 37, 50), respectively. 
 

 
Fig. 5 Initial search graph 

 

 In order to test the basic performance of the proposed 

method, the first simulation of searching for static targets was 

conducted. The search process based on the proposed improved 

artificial bee colony method is shown in Figure 6. 
 

 
Fig. 6 Initial iteration diagram 

 

 
Fig. 7 Iterative Tenfold Graph 

 
Fig. 8 Iterative Graph Thirty Times 

 

Figures 7, and 8 show the search results after 10 and 30 

iterations, respectively. Figure 9 is a top view of the optimal 

path. 
 

 
Fig. 9 Final iteration result 

 

 The results in Figure 9 indicate that the proposed method 

can effectively locate the target. Firstly, AUVs are unaware of 

obstacles and targets in the underwater environment, so each 

AUV randomly cruises in the underwater environment. Then, 

the AUV detects the information of the target point and forms 

an alliance of three AUVs to search for the target point (Figure 

6). When the target is found and locked by one of the AUVs 

(Figure 8), the other two AUVs in the alliance randomly cruise 

again to search for other targets. Finally, two targets were found 

and the search task was completed (Figure 9).  
 

 
 Fig. 10 Graph of Iterations and Optimal fitness 

 

As shown in Figure 10, the whole algorithm has a fast 

iteration speed. When it iterates to 20 times, it is basically close 



to the optimal fitness. This advantage will bring great 

convenience for the algorithm to be used in the real underwater 

environment. 

The results of the comparative experiment are shown in 

Table I.  
TABLE I 

COMPARATIVE EXPERIMENT 

Method Fitness Iterations Cost time(s) 

I-ABC  42.37 31 5.26 

ABC 45.60 37 7.69 

PSO 42.02 34 6.45 
 

It can be seen that all three methods can effectively 

complete the task of multi robot collaborative search in 

underwater environments. However, it can be seen that the 

improved artificial bee colony algorithm proposed in this paper 

has advantages such as fast iteration speed, excellent generated 

solution quality, and ease of application. 

V.  CONCLUSION 

 This article aims to study the collaborative search problem 

of multi robot systems in unknown three-dimensional 

underwater environments. Firstly, the improved random walk 

algorithm is used to make all AUVs cruise randomly in the 

underwater environment; Then, when a robot discovers the 

location of the target point, an improved auction algorithm is 

used to construct a search and capture alliance for the target 

point based on the target location; Finally, the search capture 

alliance utilizes an improved artificial bee colony algorithm to 

achieve path planning to the target location, in order to 

complete the entire search behavior. The algorithm proposed in 

this article fully considers the motion characteristics of AUVs. 

Simulation results show that this algorithm can effectively 

achieve capture tasks in three-dimensional complex 

environments and has high applicability. 
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